

Blocks-to-CAD: A Cross-Application Bridge
from Minecraft to 3D Modeling

Ben Lafreniere*, Tovi Grossman*†
*Autodesk Research, Toronto, ON, Canada

{firstname.lastname}@autodesk.com
†University of Toronto, ON, Canada

tovi@dgp.toronto.edu

ABSTRACT
Learning a new software application can be a challenge,
requiring the user to enter a new environment where their
existing knowledge and skills do not apply, or worse, work
against them. To ease this transition, we propose the idea of
cross-application bridges that start with the interface of a
familiar application, and gradually change their interaction
model, tools, conventions, and appearance to resemble that
of an application to be learned. To investigate this idea, we
developed Blocks-to-CAD, a cross-application bridge from
Minecraft-style games to 3D solid modeling. A user study of
our system demonstrated that our modifications to the game
did not hurt enjoyment or increase cognitive load, and that
players could successfully apply knowledge and skills
learned in the game to tasks in a popular 3D solid modeling
application. The process of developing Blocks-to-CAD also
revealed eight design strategies that can be applied to design
cross-application bridges for other applications and domains.
Author Keywords
Feature-rich software; software learning; skill transfer.
ACM Classification Keywords
H.5.m. Information interfaces and presentation: Misc.

INTRODUCTION
Learning a new software application can be difficult, pre-
senting users with a range of challenges [18]. When faced
with a new application, users are known to have a production
bias – progress toward achieving goals is the paramount con-
cern, and they have little motivation to spend dedicated time
on learning – and an assimilation bias – they apply what they
already know to interpret new situations [7, 15]. In early soft-
ware learning research, these phenomena were used to argue
for techniques that enable users to get started quickly, and
relate knowledge from the non-software world to the con-
cepts being learned [5]. Thirty years later, we live in a world
where people’s expectations about software are shaped heav-
ily by their experiences with other software – a child may
grow up playing video games and using simple apps before
moving on to more sophisticated software as required by
their changing interests, careers, and creative endeavors.

Motivated by the above, we are interested in how a user’s
experience with an existing software application can be used
as a foundation for expanding their knowledge into new and
unfamiliar software and domains. We propose a model of
cross-application bridges that start with the interface of a
known application, and gradually change their interaction
model, tools, and conventions to resemble that of an
application being learned. Cross-application bridges are
analogous to training wheels [6] and multi-layered interfaces
[36], but while such techniques progressively disclose UI
components to aid learning within a single interface, cross-
applications bridges aid in learning across multiple user
interfaces. Changes are triggered by user behavior, to
provide new capabilities in motivated learning scenarios
where they are most likely to be understood and appreciated.
The overall idea is to help users stay motivated by embracing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for com-
ponents of this work owned by others than the authors must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
UIST '18, October 14–17, 2018, Berlin, Germany
© 2018 Copyright is held by the authors. Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5948-1/18/10…$15.00
https://doi.org/10.1145/3242587.3242602

Figure 1. A cross-application bridge from Minecraft-style games to Tinkercad-style 3D solid modeling. (a) The player starts out
in a Minecraft-like voxel world; (b) over time, tools are introduced which alter the interaction model and introduce 3D-modeling
concepts; (c) eventually, the player transitions to Tinkercad-style 3D solid modeling.

mailto:Permissions@acm.org
https://doi.org/10.1145/3242587.3242602

their production and assimilation biases, allowing them to
gain new skills and capabilities while completing personally-
relevant tasks in a familiar interface.

To investigate this concept, we designed and developed
Blocks-to-CAD, a cross-application bridge that starts in a
Minecraft-style voxel building game and gradually
introduces 3D solid modeling in the model of Tinkercad
(Figure 1a-c). This application of the cross-application
bridge approach is appealing for several reasons. First,
Minecraft is extremely popular, having sold over 144 million
copies since its release in 2011, and with more than 74
million monthly players. This suggests that a huge base of
users possess Minecraft skills, and could benefit from a
technique that can leverage their experience to develop skills
in other applications. Second, Minecraft is fundamentally
about building in 3D, albeit using a block-by-block
approach, which suggests that some of its players may be
interested in learning more sophisticated 3D modeling skills.

The specific contributions of this work are as follows:
• We introduce the concept of cross-application bridges –

interfaces that gradually transform from a known
application’s interface into a target application’s interface,
introducing new features and capabilities in motivated
learning scenarios triggered by user behavior;

• We present a prototype system that implements this
concept, to transition users from a Minecraft-style building
game to 3D solid modeling;

• We present an evaluation of our system with children ages
10–14, which shows that it can effectively teach 3D mod-
eling concepts without hurting enjoyment of the game;

• Based on our experience, we present eight strategies that
designers can apply to develop cross-application bridges
for other applications and domains.

RELATED WORK
This work builds on existing research on software learning,
reduced functionality interfaces, techniques for transferring
knowledge between applications, and theories of learning
and education. Each of these areas is reviewed below.
Software Learning
Early HCI research on software learning pointed out the fail-
ures of manuals and documentation [5, 7, 33], and identified
a task-focus in users – progress toward goals is paramount,
and time spent on other concerns, such as learning how to
use the software, is minimized to the greatest extent possible
[7, 34]. At a lower level, Grossman et al. identified five com-
mon classes of problems that users face when learning
modern feature-rich software applications: understanding the
sequence of operations for a task, awareness of functionality,
locating functionality, understanding how to use specific
tools, and transitioning to efficient behaviors [18].

Building on the above work, a variety of techniques have
been developed to promote software learning, with many fo-
cused on providing minimal instruction and helping users to
learn in the context of realistic tasks. Examples include in-

context help and tutorials [12, 17, 21], animated and video
instruction [1, 30], game-based training [11, 25], tutorials
that react to a user’s progress or skill level [12, 30], and
methods for linking web-based help content with an applica-
tion’s interface [14]. However, little research in the software
learning literature has explored how knowledge can be trans-
ferred between applications. A notable exception is
ShowMeHow [31], which builds translation maps between
the interface languages of similar applications (e.g., GIMP
and Photoshop) to help users locate commands in one appli-
cation using the vocabulary of another. The authors
demonstrate that this allows users to more quickly find cor-
responding functionality between applications, and to apply
tutorials intended for one application to a similar application.

In contrast to ShowMeHow, we are interested in gradually
transitioning a user between applications, by leveraging their
existing knowledge and the constraints and similarities in the
conceptual models of the source and target applications. The
idea of using gradual UI transitions to aid software learning
has been explored within a single application in the form of
“training-wheels” techniques that progressively reveal func-
tionality, as described below.
Training Wheels and Multi-Layered User Interfaces
For users in the early stages of learning an application, the
complexity of the interface can be a hindrance. Recognizing
this, researchers have proposed training-wheels for inter-
faces [6], which limit functionality to prevent common or
particularly troublesome error states, and multi-layered in-
terfaces [36], which enable progressive revelation of an
system’s full functionality by organizing the interface into
multiple conceptual layers that the user can switch between.

Reduced-functionality approaches have been shown to ena-
ble faster learning [2, 13, 23], and to reduce errors and time
spent on error recovery while learning [6]. When it comes to
transferring knowledge, some studies have indicated that this
approach improves a user’s ability to perform in the full sys-
tem [8], while others show effects only for certain types of
interfaces, such as those with deeply nested menus [24], or
no change in performance on new tasks learned in the full
system [23]. Overall, however, work in this area suggests
that it is valuable to make a user’s first steps in working with
a new application easy by reducing the system’s complexity,
and by providing learning materials and guidance [24].

This form of learning is often successfully employed in
games, which use progressive disclosure to match the level
of challenge to a player’s developing skills [9, 37]. Gamifi-
cation mechanics have now been introduced into many non-
game contexts [10], including software learning systems [11,
25]. In particular, our work was inspired and informed by
Dong et al.’s discovery-based puzzle game to help people
learn Adobe Photoshop features [11], and Bruckman’s de-
sign recommendations for educational games [3].

Cross-application bridges can be viewed as a type of
adaptive multi-layered interface, in that the system initiates
changes to the interface that progressively reveal

functionality over time. However, unlike existing work in
this area, functionality for a new application is revealed in
the interface of a known application. This enables the user to
learn in a familiar environment, where they can fall back on
their existing skills, and enables the system to use the
familiar environment as a context for motivated learning
scenarios that reveal new functionality.
Theories of Learning and Education
Several prominent theories of learning and education suggest
that a task-centric focus toward learning, as well as being fa-
vored by users, is beneficial for learning. The theory of
situated learning emphasizes that learning should take place
in authentic settings [32]. Constructivism [29] positions
learners as active sense makers who seek to build coherent
and organized knowledge, and can thus choose situations to
manipulate and discover where their current conceptions
conflict with observations. Likewise, discovery learning [4,
11] advocates for active participation in the learning process,
and constructionism [27] posits that learning occurs “most
felicitously” when constructing a public artifact “whether a
sand castle on the beach or a theory of the universe.” [28]
The overall concept of cross-application bridges embraces
learning in the context of active participation, and Blocks-to-
CAD is specifically built around the idea of construction.

Though theories such as constructionism and discovery
learning are sometimes interpreted as prescribing a fully
hands-off approach, it has been argued that “…students need
enough freedom to become cognitively active in the process
of sense making, and […] enough guidance so that their cog-
nitive activity results in the construction of useful
knowledge.” [26] Methods that allow active exploration but
also guide the construction of useful knowledge (guided dis-
covery methods) are advocated to satisfy these criteria.

The cross-application bridges approach naturally fits with
the model of guided discovery. Our prototype system is de-
signed to transition users between interactive systems using
a series of discoveries, supplemented with guidance in the
form of short videos designed to motivate and communicate
to the user how the interaction model has changed.
CROSS-APPLICATION BRIDGES
Cross-application bridges incrementally introduce the inter-
action model of an unfamiliar target application within the
interface of a known application that is familiar to the user.
Instead of forcing the user to switch to an unfamiliar appli-
cation and engage in a performance dip [35] – a frustrating
period of orientation and re-learning of basic skills (Figure
2a) – the user can learn through a series of motivated learning
scenarios that introduce new knowledge, capabilities, and
skills, all within a familiar environment (Figure 2b). Expand-
ing on the above, our model for cross-application bridges is
built on three main design principles:

Build on the known application. First, we wish to inject
learning of the target application into the known application,
which the user has experience using to perform personally-
relevant tasks. This gives the user a familiar environment to

work in as they learn, and enables them to fall back on their
existing skills and abilities during the process. It also shifts
the framing of the experience – instead of being dropped into
an unfamiliar interface where their existing skills may not
apply, the user learns in a familiar domain where new capa-
bilities are provided that augment their existing skills.

Figure 2. Two models for switching between a known and
target application. (a) Switch outright, which imposes a cost
in re-learning basic skills. (b) Transition from the known
application, through a series of motivated transition tasks.

Present new capabilities in motivated learning scenarios.
Second, the system should introduce capabilities from the
target application in scenarios where they provide an obvious
advantage, or illustrate a key difference between the known
and target applications. By doing so, the system should help
the learner to discover how the interaction models of the two
applications differ, and foster an appreciation for the ad-
vantages of the target application’s interaction model.

Gradually transition between interaction models. Finally,
the system should create a gradual transition toward the in-
teraction model of the target application. To keep the
transition gradual, it may be necessary to develop intermedi-
ate interaction models between those of the two applications.

The above design principles informed the design of our
prototype cross-application bridge between Minecraft-style
building games and Tinkercad-style 3D solid modeling.
Before describing our prototype system in detail, we briefly
introduce these two applications.

Figure 3. The user interfaces of (a) Minecraft, (b) Tinkercad.

FROM MINECRAFT TO TINKERCAD
Minecraft is a sandbox game in which players explore, inter-
act with, and build in a procedurally-generated voxel world.
Players start the game with no instructions, and engage in a
simple form of 3D building in which the world is manipu-
lated one block at a time. The game is played from a first-
person perspective (Figure 3a) in which the player can walk
around and create or remove blocks up to a set distance in
front of them.

Tinkercad (Figure 3b) is a 3D solid modeling application that
enables users to create, manipulate, and combine 3D primi-
tives. Primitive shapes are dragged from a drawer on the right

side of the screen onto a workplane. Shapes can be manipu-
lated (scaled, resized), repositioned, and combined with one
another to form more complex models.

While Tinkercad’s interface is designed to be simple, past
work has shown that it can still be difficult to learn and use
by novice users [20]. To use Tinkercad effectively, a user
must understand a range of skills, including object-centric
3D navigation to move the camera around the scene; interac-
tion mechanisms to reposition, resize, and rotate objects; and
additive and subtractive Boolean operations to combine
primitives into more-complex shapes. A particularly im-
portant concept in Tinkercad is the workplane, which defines
ground plane relative to which other operations occur (the
blue grid in Figure 3b). Primitives are placed on the work-
plane when created, and dragging a shape moves it across the
workplane. To place shapes on the faces of other shapes, a
workplane tool can be used to set the workplane to be parallel
to a face of an object in the scene. Past work has shown that
understanding the workplane tool is a particular source of
difficulty for new users of Tinkercad [20].

In terms of skills that overlap between Minecraft and
Tinkercad, both require the user to conceptualize and plan
how to build in 3D spaces, though they differ significantly in
how these building activities are carried out. As a starting
point for the design of our bridge from Minecraft to
Tinkercad, we now consider how these applications differ in
terms of application domain, data representation, and
interaction paradigms.
Application Domains
Both Minecraft and Tinkercad enable the user to build ob-
jects in a 3D environment, but they differ in how this activity
is framed. Tinkercad provides an environment for designing
models for 3D printing, whereas Minecraft provides a virtual
world with minimal restrictions placed on the user, and al-
lows them to define their own tasks. That is, Tinkercad, like
most CAD software, is used with a mainly extrinsic motiva-
tion, whereas activities in Minecraft are intrinsically
motivated. This suggests a potential benefit for users learn-
ing Tinkercad through a cross-application bridge from
Minecraft – it can provide an intrinsic motivation for their
learning activities that would not exist in Tinkercad alone.

In addition to differences of motivation, we hypothesize that
a key feature that makes building in Minecraft compelling is
a flat difficulty curve. The difficulty of creating a given shape
in Minecraft is proportional to the number of blocks that
make it up, with the complexity of the object outweighed by
the time it takes to place the individual blocks. In contrast, in
Tinkercad, the complexity of an object plays a much greater
role in determining how successful a user will be in building
something, because creating geometrically complex objects
requires more sophisticated operations and manipulations
than simpler objects. The result of this difference may be that
beginners with Minecraft are less limited in the classes of
objects they can create – complex objects are as easy to
create as simple ones, with the main constraining factor

being the number of blocks a design is made up of. In
contrast, beginner users of Tinkercad may be able to easily
conceive of designs that are unreachable with their current
skill set. This also highlights a disadvantage of the Minecraft
model of building – the time to build an object is proportional
to the number of blocks that make it up, regardless of its
complexity, making it difficult to build large structures, even
if they are not complex (e.g., a tall cylindrical tower).

The above discussion suggests a specific strategy that can be
used by a cross-application bridge between Minecraft and
Tinkercad – tools and capabilities from Tinkercad can be
presented as saving time when many blocks need to be cre-
ated or removed.
Data Representations
Minecraft represents the world as a three-dimensional grid of
voxels, whereas Tinkercad represents the scene as a
collection of solid shapes. As described earlier, this has
implications for the difficulty of creating different objects in
the two applications. This difference also makes it much
more difficult for a user to modify an object built in
Minecraft, as any alterations must be done block-by-block,
and there are no easy methods to move, resize, or duplicate
an object once it has been created. In contrast, objects created
in Tinkercad can be easily manipulated after they have been
created.

To address this discrepancy, our system adopts a two-way
mapping between the voxel and 3D solid model representa-
tions, so that users can work with either representation and
see the advantages of each.
Interaction Paradigms
In terms of interaction paradigm, the controls to Minecraft
are like those of most first-person games – the mouse cursor
is “locked” to the center of the screen, and mouse movement
maps to looking up and down or rotating the player left and
right, with keyboard controls to walk forward, backward, or
laterally left and right. The currently-equipped tool or block
type can be changed using keyboard commands to open an
inventory screen, or through use of the mouse wheel to select
items in a toolbar visible at the bottom of the screen.

Tinkercad, in contrast, follows standard WIMP interaction
conventions. The mouse cursor is not locked, and is used to
interact with toolbar buttons, to drag primitives into the scene
from the shape drawer, to select objects in the scene, and to
directly manipulate selected objects using resizing, reposi-
tioning, and rotation handles. The 3D scene is navigated
using object-centric controls centered on a pivot point, and
allows panning, zooming, and orbiting with a ViewCube
widget [22] or by clicking and dragging the mouse (right
mouse button + drag to orbit, middle mouse button + drag to
pan, scroll wheel to zoom in/out).

Given the extensive differences between the interaction par-
adigms of the two applications, we adopted a multi-step
approach to bridge the two interaction models, where new UI
concepts are introduced gradually.

SYSTEM DESCRIPTION
When Blocks-to-CAD is started, the user begins in a tradi-
tional Minecraft-style interface (Figure 4a). They can walk
around the world in a first-person perspective, create blocks
from a set of six colors, and remove blocks one at a time.

As they interact with the world, the system monitors their
activity and new tools and functionality are gradually
unlocked. We start by describing the progression of tools and
capabilities that are unlocked, followed by the mechanisms
and criteria used to determine when tools are unlocked.

Tree-stamp tool. The first tool to be unlocked enables the
user to stamp a multi-block tree shape in one click (Figure
4b). The tool is added to the player’s toolbar, and can be se-
lected as if it was another block type. When the tool is used,
the point of view transitions to a third-person view of the
scene, centered on a pivot point where the player was looking
when the tool was activated. The mouse cursor is unlocked,
and the user can stamp multiple tree shapes by clicking the
corresponding point in the scene. Clicking a ‘Back to First
Person’ button re-locks the mouse cursor and returns the user
to the first-person view.

3D navigation widgets. The next tool to be unlocked is Tink-
ercad’s set of 3D navigation widgets, including the
ViewCube and a set of additional controls (Figure 4c). These
widgets are displayed only when the user is in third-person
mode (i.e., when using the tree-stamp tool or other third-per-
son tools described in the rest of this section), and enable the
user to rotate the camera around the scene’s pivot point, or
zoom in/out. In addition to 3D navigation with these widgets,
Tinkercad-style 3D navigation using the mouse can be used
in the third-person view.

Shapes tool. The Shapes tool operates similarly to the tree-
stamp tool when invoked, changing the player to the third-
person perspective. For this tool, however, a shape drawer is

displayed on the right side of the screen (Figure 4d). The user
can drag 3D solids from this drawer into the world. Once in
the world, solids can be clicked and dragged to move them.
Upon returning to the first-person view, shapes created in
this way are ‘voxelized’, converting them into blocks (Figure
5). However, the shapes retain their dual representation – if
the player returns to the third-person view, they are displayed
as 3D solids again, and can be moved or manipulated.
Maintaining this dual representation was intentional, to
emphasize one of the advantages of 3D solid modeling over
building in Minecraft – namely that shapes can be easily
repositioned or manipulated after being created. As
mentioned previously, achieving the same goal in Minecraft
alone would be challenging, requiring the user to re-create
each constituent block of a large shape in a new location.

Figure 5. The shapes from Figure 4d, converted into blocks
upon the user returning to first-person mode.

Shape resizing. Next, players gain the capability to resize
solids in the third-person perspective. Resizing handles,
matching those provided in Tinkercad, are provided at the
corners and top of solids (Figure 4e). Clicking and dragging
these handles alters the dimensions of the solid.

Workplane tool. The final tool to be unlocked is the Work-
plane tool – a button for this tool is added to the shapes
drawer, just above the list of solids (Figure 4f). As described
earlier, the Workplane tool in Tinkercad allows the user to

Figure 4. The six stages of functionality in the Blocks-to-CAD system. (a) Minecraft-style block tools; (b) Tree-stamp tool;
(c) 3D navigation widgets; (d) Shapes tool; (e) shape-resizing handles; (f) Workplane tool.

set the 3D plane relative to which other operations are per-
formed (e.g., when the user clicks and drags an object, it
moves across the current workplane). In practice, this ena-
bles the user to easily place solids on top of one another (e.g.,
by setting the workplane on top of an existing solid, before
creating the new solid), or on the faces of other solids.

While the above tools do not represent all functionality avail-
able in Tinkercad, we believe they collectively provide a
good representation of 3D solid modeling. Moreover, our ap-
proach could easily be extended with additional tools and
capabilities, such as functions for grouping objects or per-
forming additive and subtractive Boolean operations.

In the next section, we discuss how our prototype system de-
termines when to unlock new tools and capabilities.
Unlocking Features
The progression of tools described in the previous section
fulfills two of our design goals – building on the known ap-
plication, and creating a gradual transition between
interaction models. To fulfill our final design goal of creating
motivated learning scenarios, we adopted a behavior-driven
approach to determine when features should be unlocked.
Our intention was for tools to be unlocked in situations where
the user would be able to appreciate the advantages that the
new tool provides. To this end, we used two strategies for
determining when to unlock a feature.

Content-based unlocking. The first approach we employed
was to detect when the user was building a particular kind of
object with blocks, or engaging in a particular type of build-
ing activity, and to unlock tools that could help with that
activity. We developed heuristics to detect when the user was
building trees, basic shapes, and ‘stacked’ structures consist-
ing of a pattern of blocks repeated on top of one another (as
would be used to build a large structure from the ground up).

To implement this approach, the system tracks all blocks cre-
ated by the user. When a block is created, the region of user-
created blocks connected to that block are determined by per-
forming a 3D flood fill algorithm from the new block’s
position. The following heuristics are then applied to the re-
sulting connected region of blocks:

• Trees – Region is at least 4 blocks high, and contains at least
twice as many green blocks above the midpoint as brown
blocks below the midpoint.

• Shapes – Region is matched by a sliding window of templates
for cubes, pyramids, and spheres of up to 4×4×4 blocks.

• Stacked structures – Region consists of at least 4 layers of an
identical 2D pattern of at least 4 blocks, stacked vertically.

While we used manually-created heuristics for content-based
behavior detection, we believe that more sophisticated ap-
proaches based on machine learning could learn heuristics
over time, or detect the type of object a user is building.

Operation-based unlocking. The second approach we used
was to detect the number of operations of various types the
user has performed (e.g., the number of blocks created, or

instances of moving/resizing a shape). Our rationale is that it
is valuable to wait until the user becomes familiar with each
new tool or capability before unlocking the next.

Drawing together the above approaches, the unlocking crite-
ria we used in our system are set out in Table 1. Counts are
reset after each tool is unlocked. These criteria were tuned to
enable participants to experience all tools within the
timeframe of the user study described later in the paper. For
other settings, such as users playing Minecraft over hours,
days, or weeks, a different tuning may be more appropriate.

Tool Unlocking criteria
Tree-stamp tool 2 heuristic trees or 40 blocks created
3D nav. widgets 2 trees stamped or 80 blocks created

Shapes tool 2 heuristic shapes or 80 blocks created
Shape Resizing 1 heuristic stacked structure or 2 shape moves

or 80 blocks created
Workplane tool 2 shape resizes or 6 shape moves or 80 blocks created

Table 1. Tool unlocking criteria used in our system.

In terms of the mechanism for unlocking new tools and func-
tionality, a notification is displayed in the corner of the user’s
screen (Figure 6a). When the user presses a key to unlock the
tool, a modal dialog is displayed with a short 15–60 second
video loop demonstrating the newly-unlocked capability.
This mechanism was designed to feel like unlockable
“achievements” that are often used in video games, rather
than formal training materials.

Figure 6. When the threshold for unlocking a tool is met, a
notification is displayed in the corner of the screen (a).
When the user unlocks the tool, a modal dialog with a short
video demonstrating the tool is played (b).

System Implementation
The system was implemented in JavaScript using three.js and
a range of other JavaScript libraries. The voxel game com-
ponent was based on the open-source voxel-engine1 project,
extensively modified and customized for the project. The
embedded CAD functionality was built on a closed-source
3D editor library on which Tinkercad is built, used with per-
mission and substantially modified for the project.

Though both voxel-engine and the Tinkercad editor are built
using JavaScript and the three.js library, it was challenging
to combine them. In particular, it was tricky to manage user
input, as both applications were developed assuming raw ac-
cess to keyboard and mouse events. To address this, our

1 https://github.com/maxogden/voxel-engine

system uses a state-based representation to manage which
application receives input events at any given time, with
states for the first-person and third-person interaction modes
described previously. We believe that this state-based ap-
proach could be applied in creating cross-application bridges
between other applications as well.

While our project incorporates closed-source code, we
believe that the cross-application bridge approach is well-
suited to the open-source software ecosystem, in which the
full source code of multiple applications is available to
modify and extend.
EVALUATION
We conducted a user study with two main goals. First, we
wanted to understand reactions to the unlockable features,
including whether users would incorporate them into their
building activities in the game, and how they would impact
the subjective experience of the game. Second, we wanted to
test whether use of the unlockable tools in the game trans-
lated into skills that could be transferred to the Tinkercad
application.
Study Design
Our study followed a between-subjects design. In the exper-
imental condition, participants used Blocks-to-CAD with
unlocking of features enabled. In the control condition, par-
ticipants also used Blocks-to-CAD, but unlocking was
disabled (i.e., participants had access to the basic block tools
only, for the duration of the study). Comparing these two
conditions enables us to understand the impact our system
has on learning Tinkercad, in comparison to someone who
only has experience playing Minecraft-style games.
Study Procedure
The study began with a game phase in which participants
spent 25 minutes playing Blocks-to-CAD. For this phase,
they were given the task of creating “parks” in each of a se-
ries of square-shaped open areas in the game world.
Participants were instructed to create a park in as many of the
squares in the world as they could in the time provided. Each
park had to meet four requirements: (1) four trees, around the
outside of the park; (2) two shapes – spheres, boxes, trian-
gles, etc. of dimensions at least 2×2×2; (3) a tower at least
2×2 blocks wide and 10 blocks tall; and (4) a simple house
consisting of a box of size 3×3×3 or greater and a triangular
roof. Participants were given a handout explaining these re-
quirements with example screenshots (see supplementary
materials), but were told that they did not have to exactly re-
produce these examples, so long as all the components were
present. The experimenter checked each park before allow-
ing the participant to begin building the next.

In the experimental condition, participants were told that the
game had unlockable features, and that a notification would
be displayed in the corner of the screen if one was unlocked.
If a participant had an unlocked tool pending when they com-
pleted a park (i.e., the unlock notification displayed), the
experimenter reminded them that they could open it with the

‘X’ key before they went on to start the next park. In practice,
this was a rare, occurring only twice across all participants.

The game phase was followed by a transfer phase in which
participants attempted a series of 3D modeling tasks in Tink-
ercad. Participants were given 25 minutes in total to
complete three tasks: (1) creating three primitive shapes in a
specified arrangement (to test basic shape placement); (2)
creating a box and three pyramids of specified sizes (to test
shape positioning and resizing); and (3) reproducing a simple
car model (to test more-advanced orientation and placement
of shapes). The handouts for each task are provided as sup-
plementary materials with this paper. Tasks were presented
serially in the order above.

Participants were not given instruction on how to use the
software, apart from being told that they could delete shapes
by selecting them and using the ‘backspace’ key. The exper-
imenter stated that they could not provide help with
performing the tasks, but that they could confirm if a model
was acceptably close to the reference model.

A short questionnaire was administered after each of the
game phase and the transfer phase, to measure how fun par-
ticipants found each part of the study, and their cognitive
load (using an adapted version of the NASA-TLX question-
naire [19]). For the game phase, we asked participants in the
experimental condition to rate how useful, fun, and annoy-
ing/disruptive they found the unlockable features. For both
conditions, we asked participants to tell us what they liked
about the game, and how they felt it could be improved or
made more fun.
Participants
We recruited 12 participants (6 male, 6 female, ages 10-14,
mean 11.7, SD 1.2) from two pools: children of employees
of a large software company, and members of a local chil-
dren’s soccer team. Participants were screened to ensure that
they had experience playing Minecraft, but no experience us-
ing Tinkercad. Participants were given a $25 gift card for
participating. We balanced the ages of participants across the
two conditions, to control for learning ability.

Best practices for working with young participants were fol-
lowed, including requiring parental consent to participate in
the study, and gaining assent to participate from the partici-
pants themselves. Based on our observations, the study was
a fun experience for participants.
Results

Game phase – Use of unlockable features
To analyze reactions to the unlockable features, we look at
whether the features were used, how the features were used,
and participants’ subjective reactions to them.

All but one participant in the experimental condition un-
locked all five of the unlockable features. Figure 7 shows a
timeline indicating participants’ use of the third-person mode
over time. We can see that use of the unlockable features in-
creases over time, to a point where near the end of the session

many participants were heavily using the unlockable tools.
Overall, participants in the experimental condition spent an
average of 26% of their time in the third-person mode, with
individual participants ranging from 5% (P3) to 50% (P2).

Figure 7. Timelines for participants in the experimental
condition, indicating use of Tinkercad mode (blue) and
points at which tools were unlocked (red dots). Participants
are sorted by total use of the Tinkercad mode.

P3, the one participant who did not unlock all the tools, ap-
peared to be somewhat overwhelmed with figuring out the
game’s control scheme and how to perform the building
tasks. However, she did not express a negative view of the
unlockable features, and seemed interested in the tree-stamp
tool when she did try it.

In summary, nearly all participants appeared to immediately
recognize the value in unlockable features, and incorporated
them into their building activities.
Game phase – Subjective ratings and impressions
In terms of subjective ratings, participants rated the unlock-
able features highly when asked about their usefulness and
fun, and low for annoyance or disruption (Figure 8).

Figure 8. Subjective ratings of the unlockable features.

When asked about what they liked about the overall system,
several participants mentioned the unlockable features:

I liked that you could unlock stuff, because it helped build and
it was really nice. – P6

[P7, when asked what she liked about the system]: How you
could unlock the features, and it made it easier, to do it. Be-
cause the first time I was, like, making, I had to make them
myself. Next time after I did that [unlocked the features] it was
a lot easier, I just had to place them down. – P7

When we asked participants what they felt could be im-
proved about the system, or how it could be made more fun,
none of the participants mentioned the unlockable features as
a negative. Instead, suggestions focused on features of the
full Minecraft game that could be added to our system, such
as additional block types; enemies and other survival aspects;
and a more-realistic sky texture. None of the participants
who experienced the unlockable features suggested that they
made the system feel less game-like, and participants talked
about the features as though they were part of a game.

One participant, P11, wanted to be able to modify the blocks
created using the shapes tool after returning to the first-per-
son mode, and have these changes persist (in our prototype
system, blocks modified in voxelized Tinkercad shapes do
not persist in this way). This highlights how including mul-
tiple data representations and interaction models can create
the expectation that they will work together seamlessly.

Comparing participants’ subjective ratings of the game be-
tween conditions, we did not find a significant difference
between cognitive load (Welch two-sample t-test, t(9.9)=0.4,
p = .67) or subjective ratings of fun (t(6.2)= -0.2, p = .87),
with similar means (Figure 9). This provides further evi-
dence that the modifications did not make the game seem
more challenging or less enjoyable.

Figure 9. Subjective ratings of the overall game experience,
and the cognitive load (based on 5 NASA-TLX questions)

In summary, participants’ subjective ratings and comments
indicate that the unlockable features enhanced the game ex-
perience, were welcomed and utilized by participants, and
did not have adverse effects on enjoyment or cognitive load.
Transfer-phase
To analyze whether the unlockable features in the game re-
sulted in skills transfer to Tinkercad, we examine task
completion and task time, and present observations of how
participants worked on the transfer tasks in the experimental
versus control conditions.

Figure 10. Timing for transfer tasks.

All participants, across both conditions, completed all three
transfer tasks. Task completion times for Task 1 were nearly
identical between conditions (mean of 35s for both). For
Tasks 2 and 3, the mean completion times were lower for the
experimental condition (109s vs. 161s, and 637s vs. 855s re-
spectively). However, individual times varied widely, and
Welch two-sample t-tests failed to show a significant differ-
ence (Task 2: t(7.4)=2.1, p = .07; Task 3: t(9.1)=0.9, p = .39).

Qualitatively, we observed that participants in the two con-
ditions worked differently on the transfer tasks. None of the
participants in the control condition used the workplane tool,
while all but one participant used it in the experimental con-
dition. The exception to this was P3, the participant who did

not unlock this tool in the game phase, as discussed previ-
ously. Moreover, these participants demonstrated through
their actions that they understood how the workplane tool
was meant to be used, and how it could be applied the trans-
fer task. Participants in the experimental condition also
appeared more confident in moving and resizing shapes.

Given these qualitative differences, the lack of an observed
significant difference warrants discussion. We believe there
are two reasons a statistical difference was not observed.
First, our sample size is small for a between-subjects study.
Second, 3D modeling tasks naturally lead to a high variance
in task times. Even if a user has determined a fundamentally
correct strategy to use, it can be easy to run into difficulties
while carrying out that strategy. For example, accidentally
manipulating the wrong resize/rotate handle, or clicking and
dragging the wrong shape, can result in modifications that
are time-consuming to recover from. We observed this fre-
quently during the study, and in-practice this greatly
increases the variances of task times for novice users.

In summary, our qualitative observations provide evidence
that participants did learn skills in the game that they could
apply in the full Tinkercad application. This may be reflected
in a decreased mean task time for the transfer tasks, but ad-
ditional timed studies are warranted to confirm this.
DISCUSSION
Overall, our study findings indicate that less than 30 minutes
of playing a familiar game with cross-application bridge en-
hancements can enable users to learn tools and skills they can
successfully apply in an unfamiliar application and domain.
Moreover, the enhancements achieved this without decreas-
ing enjoyment of the game for players, or significantly
increasing their cognitive load while playing.

In this section, we consider the question of how cross-appli-
cation bridges could be built for other applications. To this
end, we present a set of strategies for applying this approach
that emerged out of this project. We also consider next steps
for extending the research presented in this paper.
Strategies for Designing Cross-Application Bridges
Developing Blocks-to-CAD revealed several insights into
how to design cross-application bridges. Based on our expe-
rience, one of the most important design considerations is
how the conceptual models of the known and target applica-
tions differ. Six areas stand out as particularly important:

Application Domain. The known and target applications
may exist in different domains. An application’s domain
defines the purpose of the application from the user’s
perspective, and thus can be useful for framing motivated
learning scenarios. For example, Blocks-to-CAD uses the
common theme of ‘building’ to frame new capabilities, and
to motivate and advance the progression through the
unlockable features.

Conceptual Model Differences. Understanding the differ-
ences between the conceptual models of the known and

target applications is important for developing a set of steps
that illustrate the conceptual model of the target application.
It is also important to understand that users will have a strong
mental model for the known application, and care must be
taken when the target application’s model contradicts it or
differs significantly.

Data Representation. A particularly important difference
between applications is how each represents data (e.g., a ma-
trix of voxels versus a collection of 3D solids). To bridge
differences in data representation, commonalities or map-
pings between the representations can be exploited.
Depending on how extensively they differ, an artificial map-
ping may need to be developed to relate the two. In Blocks-
to-CAD, we created a mapping between 3D solids and blocks
in which the solids are converted to blocks when the player
returns to the first-person mode, but the 3D solid representa-
tion is maintained in parallel and can be returned to in the
third-person mode.

Tools and Capabilities. The known and target applications
may provide different sets of tools and capabilities for mod-
ifying data, or tools with similar names that act differently in
the two applications (e.g., the ability to remove blocks in
Minecraft, and the command for deleting objects in Tinker-
cad). Unlike differences in application domain, or cross-
cutting concerns such as data representation, tools are easily
thought of individually. This makes them a good unit for in-
troducing new capabilities to the user. In Blocks-to-CAD, we
took advantage of this and used a series of tools to introduce
new functionality. We also used the invocation of the tree-
stamp and shapes tools as a mechanism for entering the third-
person mode, in which the interaction model of Tinkercad is
active. We believe this works well because it gives the user
explicit control over switching the interaction model, and be-
cause it is not uncommon for tools in applications to impose
a different interaction model for the duration that the tool is
being used.

Interaction Techniques. The interaction techniques for ap-
plying tools and commands, and otherwise interacting with
the two applications, may differ as well. In Blocks-to-CAD
we had to contend with an extreme example – a ‘locked’
mouse cursor for the game, and an unlocked cursor for 3D
modeling. To bridge this difference, we broke the transition
into multiple steps – the tree-stamp tool releases the pointer
lock for the duration that the tool is used, then re-locks it
when the user returns to first-person mode. Next, the 3D nav-
igation widgets introduce a new way to navigate the scene.
Over time, participants spend more and more of their time
working using the mouse cursor in the unlocked state.

Interface Conventions and Aesthetics. Finally, applications
may differ in how action possibilities are communicated (i.e.,
affordances), how they provide feedback or feedforward to
the user, and their overall aesthetics. We bridged these
differences by tying conventions and visual style to the
capabilities of the application being introduced (i.e., the
game features and 3D modeling features each match the

visual style of their respective applications). An advantage
of this approach is that the conventions provide cues as to
what conceptual model each tool will operate in. An alternate
approach would be to gradually alter the visual style of the
application as a whole – an approach that has been used in
previous work as a means to reveal keyboard shortcuts [16].

Summarizing the above points, we recommend the following
strategies for designing cross-application bridges:

• Use a common theme or purpose to bridge application
domains, and to tie together activities in the two applications.

• Carefully consider how the conceptual models of the known
and target application differ, to identify areas of potential
confusion, and to plan a series of steps between models.

• Use commonalities in data representation, or a mapping
between representations, to motivate and enable users to
discover key differences between the two conceptual models.

• Maintain parallel data representations, and use switching to
demarcate changes in the interaction model.

• Use tools and commands as a unit for introducing new
functionality or changes in the interaction model.

• Tie interface conventions to tools or data representations.
• Use intermediate interaction models to incrementally bridge

larger differences in interaction techniques or modalities.
• Gradually transition toward the visual style of the target

application.

Generalizing to Other Applications
The strategies above could be immediately applied to de-
velop a bridge from simple 3D solid modeling in Tinkercad
to more complex parametric 3D modeling – a paradigm used
in sophisticated CAD software that starts with creating 2D
“sketches” of geometrically-constrained points, lines, and
shapes, which are then transformed into 3D geometry. As a
first step, an unlockable “2D-sketch” tool could be added to
Tinkercad for drawing geometric shapes on the workplane,
with simple presets for how these would be converted to 3D
solids. Next, successive classes of geometric constraints
from the target application could be unlocked and added to
the 2D-sketch mode. The progression through unlockable
functions could be motivated by the key advantages of para-
metric modeling (e.g., the ability to create models that are
easily customizable, being defined by a few user-facing pa-
rameter values and a set of geometric constraints), and the
2D-sketch mode’s visual style could match that of the target
application (e.g., DSS SolidWorks, or Autodesk Fusion 360).

As another example, these design strategies could be applied
to create a bridge from a Scratch-style “block” programming
interface to a more traditional text-based programming IDE.
Similar to the design of our prototype system, a two-way
mapping between data representations could be maintained
for the visual- and text-based code, and features could be
gradually unlocked to reveal the advantages of text-based
programming (such as the ability to quickly modify code
without dragging visual blocks).

Beyond the examples above, we believe that opportunities
arise for creating cross-application bridges whenever a
significant number of users of one application may be
interested in learning another, and the two applications have
sufficient overlap in skills that motivated learning scenarios
can be developed.
Toward a Toolkit for Cross-Application Bridges
Our design strategies provide high-level guidance for devel-
oping cross-application bridges, but they do not directly
address the many lower-level design and technical chal-
lenges that arise when trying to bridge two applications.
Thus, a key area for future work is to develop more specific
approaches for user-skill modeling, interface adaptation, and
creating motivated learning scenarios, as well as technical
approaches for combining the interfaces and features of dif-
ferent applications. Ideally, work on these research problems
could be collected in a toolkit for applying the cross-applica-
tion bridges approach to new applications.
Limitations and Future Work
This work has several limitations that should be addressed in
future research. First, our study was conducted with only 12
participants from a narrow age range (children ages 10-14).
While this was sufficient to provide initial insights into our
prototype system, and children are an ecologically-valid user
group for the applications we were working with, it would be
valuable to study a larger and more diverse group of users
(e.g., adults or professional users).

Second, our evaluation was focused on understanding
whether the cross-application bridges approach had learning
value, and how it might impact learner motivation. Future
studies are needed to investigate how the approach compares
to standard tutorials, in terms of impact on learner motivation
and depth of understanding. It would also be valuable to eval-
uate specific components of our system, such as the
heuristics for determining when new features are unlocked.

Third, Blocks-to-CAD could be extended to include other
fundamental 3D modeling concepts, such as additive/sub-
tractive Boolean operations, or understanding what makes a
model 3D printable or not.

Finally, working with children can be unpredictable, and the
experimental setting may have introduced expectations that
are different from a real-world setting.
CONCLUSION
This work has demonstrated that a cross-application bridge
can effectively teach skills that transfer to a target applica-
tion, without hurting enjoyment or increasing cognitive load.
The design process for our prototype also provided deeper
insights into the cross-application bridges approach, includ-
ing design strategies for applying this approach to other
applications. Overall, we see this work as a first step toward
a future in which users seamlessly transition from the games
they play in their youth, to the ever more sophisticated soft-
ware applications demanded by their changing interests,
careers, and creative endeavors.

REFERENCES
1. Ron Baecker. 2002. Showing instead of telling. In

Proceedings of the 20th annual international
conference on Computer documentation (SIGDOC
’02), 10–16. https://doi.org/10.1145/584955.584957

2. M Bannert. 2000. The effects of training wheels and
self-learning materials in software training. Journal of
Computer Assisted Learning 16, 4: 336–346.
https://doi.org/10.1046/j.1365-2729.2000.00146.x

3. Amy Bruckman. 1999. Can Educational be Fun? In
Game Developers Conference, 5 pages.

4. Jerome S. Bruner. 1961. The act of discovery. Harvard
Educational Review 31: 21–32.

5. John M. Carroll. 1990. The Nurnberg funnel: designing
minimalist instruction for practical computer skill. MIT
Press.

6. John M Carroll and Caroline Carrithers. 1984. Training
wheels in a user interface. Commun. ACM 27, 8: 800–
806. http://doi.acm.org/10.1145/358198.358218

7. John M. Carroll and Mary Beth Rosson. 1987. Paradox
of the active user. In Interfacing Thought: Cognitive
Aspects of Human-Computer Interaction. MIT Press,
80–111. Retrieved March 5, 2012 from
http://dl.acm.org/citation.cfm?id=28446.28451

8. Richard Catrambone and John M. Carroll. 1987.
Learning a Word Processing System with Training
Wheels and Guided Exploration. In Proceedings of the
SIGCHI/GI Conference on Human Factors in
Computing Systems and Graphics Interface (CHI ’87),
169–174. https://doi.org/10.1145/29933.275625

9. Mihaly Csikszentmihalyi. 2008. Flow: The Psychology
of Optimal Experience. Harper Perennial Modern
Classics.

10. Sebastian Deterding, Dan Dixon, Rilla Khaled, and
Lennart Nacke. 2011. From Game Design Elements to
Gamefulness: Defining “Gamification.” In Proceedings
of the 15th International Academic MindTrek
Conference: Envisioning Future Media Environments
(MindTrek ’11), 9–15.
https://doi.org/10.1145/2181037.2181040

11. Tao Dong, Mira Dontcheva, Diana Joseph, Karrie
Karahalios, Mark Newman, and Mark Ackerman. 2012.
Discovery-based Games for Learning Software. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12), 2083–2086.
https://doi.org/10.1145/2207676.2208358

12. Jennifer Fernquist, Tovi Grossman, and George
Fitzmaurice. 2011. Sketch-sketch revolution: an
engaging tutorial system for guided sketching and
application learning. In Proceedings of the 24th annual
ACM symposium on User interface software and
technology (UIST ’11), 373–382.
https://doi.org/10.1145/2047196.2047245

13. Leah Findlater and Joanna McGrenere. 2007.
Evaluating Reduced-functionality Interfaces According

to Feature Findability and Awareness. In Proceedings
of the 11th IFIP TC 13 International Conference on
Human-computer Interaction (INTERACT’07), 592–
605. Retrieved March 29, 2017 from
http://dl.acm.org/citation.cfm?id=1776994.1777071

14. Adam Fourney, Ben Lafreniere, Parmit K. Chilana, and
Michael Terry. 2014. InterTwine: Creating
interapplication information scent to support
coordinated use of software. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’14), 10 pages.

15. Wai-Tat Fu and Wayne D. Gray. 2004. Resolving the
paradox of the active user: stable suboptimal
performance in interactive tasks. Cognitive Science 28,
6: 901–935.
https://doi.org/10.1016/j.cogsci.2004.03.005

16. Emmanouil Giannisakis, Gilles Bailly, Sylvain
Malacria, and Fanny Chevalier. 2017. IconHK: Using
Toolbar Button Icons to Communicate Keyboard
Shortcuts. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 10 pages.

17. Tovi Grossman and George Fitzmaurice. 2010.
ToolClips: An investigation of contextual video
assistance for functionality understanding. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’10), 1515–1524.
https://doi.org/10.1145/1753326.1753552

18. Tovi Grossman, George Fitzmaurice, and Ramtin Attar.
2009. A survey of software learnability: metrics,
methodologies and guidelines. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’09), 649–658.
https://doi.org/10.1145/1518701.1518803

19. SG Hart and LE Stavenland. 1988. Development of
NASA-TLX (Task Load Index): Results of empirical
and theoretical research. In Human Mental Workload,
PA Hancock and N Meshkati (eds.). Elsevier, 139–183.
Retrieved February 5, 2013 from
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/200
00004342_1999205624.pdf

20. Nathaniel Hudson, Benjamin Lafreniere, Parmit K.
Chilana, and Tovi Grossman. 2018. Investigating how
online help and learning resources support children’s
use of 3D design software. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’18), 10 pages.

21. Caitlin Kelleher and Randy Pausch. 2005. Stencils-
based tutorials: Design and evaluation. In Proceedings
of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’05), 541–550.
https://doi.org/10.1145/1054972.1055047

22. Azam Khan, Igor Mordatch, George Fitzmaurice,
Justin Matejka, and Gordon Kurtenbach. 2008.
ViewCube: A 3D Orientation Indicator and Controller.
In Proceedings of the 2008 Symposium on Interactive

3D Graphics and Games (I3D ’08), 17–25.
https://doi.org/10.1145/1342250.1342253

23. Rock Leung, Leah Findlater, Joanna McGrenere, Peter
Graf, and Justine Yang. 2010. Multi-Layered Interfaces
to Improve Older Adults’ Initial Learnability of Mobile
Applications. ACM Trans. Access. Comput. 3, 1: 1:1–
1:30. https://doi.org/10.1145/1838562.1838563

24. D. Leutner. 2000. Double-fading support — a training
approach to complex software systems. Journal of
Computer Assisted Learning 16, 4: 347–357.
https://doi.org/10.1046/j.1365-2729.2000.00147.x

25. Wei Li, Tovi Grossman, and George Fitzmaurice.
2012. GamiCAD: A Gamified Tutorial System for First
Time Autocad Users. In Proceedings of the 25th
Annual ACM Symposium on User Interface Software
and Technology (UIST ’12), 103–112.
https://doi.org/10.1145/2380116.2380131

26. Richard E. Mayer. 2004. Should there be a three-strikes
rule against pure discovery learning? The case for
guided methods of instruction. The American
Psychologist 59, 1: 14–19.
https://doi.org/10.1037/0003-066X.59.1.14

27. Seymour Papert. 1980. Mindstorms: Children,
Computers, and Powerful Ideas. Basic Books, Inc.,
New York, NY, USA.

28. Seymour Papert and Idit Harel. 1991. Situating
Constructionism. In Constructionism. Ablex Publishing
Coroporation.

29. Jean Piaget. 1971. Science of Education and the
Psychology of the Child. Penguin Books.

30. Suporn Pongnumkul, Mira Dontcheva, Wilmot Li, Jue
Wang, Lubomir Bourdev, Shai Avidan, and Michael F.
Cohen. 2011. Pause-and-play: automatically linking

screencast video tutorials with applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST ’11),
135–144. https://doi.org/10.1145/2047196.2047213

31. Vidya Ramesh, Charlie Hsu, Maneesh Agrawala, and
Björn Hartmann. 2011. ShowMeHow: translating user
interface instructions between applications. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology (UIST ’11),
127–134. https://doi.org/10.1145/2047196.2047212

32. L. B. Resnick. 1987. Learning in school and out.
Educational Researcher 16, 9: 13–20.

33. Marc Rettig. 1991. Nobody reads documentation.
Commun. ACM 34, 7: 19–24.
https://doi.org/10.1145/105783.105788

34. John Rieman. 1996. A field study of exploratory
learning strategies. ACM Transactions on Computer-
Human Interaction (TOCHI) 3, 3: 189–218.

35. Joey Scarr, Andy Cockburn, Carl Gutwin, and Philip
Quinn. 2011. Dips and Ceilings: Understanding and
Supporting Transitions to Expertise in User Interfaces.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’11), 2741–2750.
https://doi.org/10.1145/1978942.1979348

36. Ben Shneiderman. 2003. Promoting Universal
Usability with Multi-layer Interface Design. In
Proceedings of the 2003 Conference on Universal
Usability (CUU ’03), 1–8.
https://doi.org/10.1145/957205.957206

37. Penelope Sweetser and Peta Wyeth. 2005. GameFlow:
A Model for Evaluating Player Enjoyment in Games.
Comput. Entertain. 3, 3: 3–3.
https://doi.org/10.1145/1077246.1077253

	Blocks-to-CAD: A Cross-Application Bridgefrom Minecraft to 3D Modeling
	ABSTRACT
	Author Keywords
	ACM Classification Keywords

	INTRODUCTION
	RELATED WORK
	Software Learning
	Training Wheels and Multi-Layered User Interfaces
	Theories of Learning and Education

	CROSS-APPLICATION BRIDGES
	FROM MINECRAFT TO TINKERCAD
	Application Domains
	Data Representations
	Interaction Paradigms

	SYSTEM DESCRIPTION
	Unlocking Features
	System Implementation

	EVALUATION
	Study Design
	Study Procedure
	Participants
	Results
	Game phase – Use of unlockable features
	Game phase – Subjective ratings and impressions
	Transfer-phase

	DISCUSSION
	Strategies for Designing Cross-Application Bridges
	Generalizing to Other Applications
	Toward a Toolkit for Cross-Application Bridges
	Limitations and Future Work

	CONCLUSION
	REFERENCES

