
Characterizing Large-Scale Use 

of a Direct Manipulation Application in the Wild
 

Benjamin Lafreniere 
1
 Andrea Bunt 

2
 John S. Whissell 

3
 Charles L. A. Clarke 

4
 Michael Terry 

5
 

HCI Lab 
University of Waterloo 

HCI Lab 
University of Manitoba 

AI Research Group 
University of Waterloo 

Information Retrieval Group 
University of Waterloo 

HCI Lab 
University of Waterloo 

 
ABSTRACT 

Examining large-scale, long-term application use is critical to 
understanding how an application meets the needs of its user 
community.  However, there have been few published analyses of 
long-term use of desktop applications, and none that have exam-
ined applications that support creating and modifying content 
using direct manipulation. In this paper, we present an analysis of 
2 years of usage data from an instrumented version of the GNU 
Image Manipulation Program, including data from over 200 users. 
In the course of our analysis, we show that previous findings con-
cerning the sparseness of command use and idiosyncrasy of users’ 
command vocabularies extend to a new domain and interaction 
style. These findings motivate continued research in adaptive and 
mixed-initiative interfaces. We also describe the novel application 
of a clustering technique to characterize a user community’s 
higher-level tasks from low-level logging data. 
 
KEYWORDS: Logging, long-term usage, community command 
usage, open source software, remote usability, adaptive interfaces, 
longitudinal study 
 
INDEX TERMS: H.5.m [Information Interfaces and Presentation 
(e.g., HCI)]: Miscellaneous 

1 INTRODUCTION 

Modern content-creation applications contain hundreds of features 
and are used by millions of users for a multitude of tasks. How-
ever, there is little published work characterizing large-scale, 
long-term usage patterns of these types of applications. Without 
this information, it is difficult to know how these feature-rich user 
interfaces should evolve to meet the needs of users. 

In this paper, we present an analysis of the ingimp dataset, a 
dataset collected from a public deployment of ingimp, an instru-
mented version of the GNU Image Manipulation Program (GIMP) 
[18]. The dataset represents more than 200 users and 4000 ses-
sions collected over a 2-year period. This paper’s contributions 
include the analysis of this dataset, the novel methods employed 
to perform this analysis, and a discussion of implications for inter-
face design. 

Our analysis of this dataset represents the first large-scale 
analysis of a content-creation application that deals primarily with 
non-text content (i.e., graphics). It is also the first such analysis of 
an application for which direct manipulation is the primary mode 
of interaction. In contrast, past analyses have focused exclusively 
on applications that largely deal with text and keyboard input, 
such as word processors (e.g., [3,10,12,21]) or software 

development environments [14]. This work complements and 
extends previous research by describing the common patterns and 
trends of long-term use in an alternative application space. 

Despite having a qualitatively different style of interaction, we 
find that many previous findings for text-centric applications ap-
ply to ingimp as well. For example, we find that users’ command 
vocabularies tend to be small (averaging only 27 commands of the 
nearly 500 available) and have little overlap with one another (the 
vast majority of commands are used by no more than 10% of us-
ers). We also find that users tend to use only a small portion of the 
available functionality (only about 6 unique commands in any 
particular session). These results have implications for interface 
design strategies intended to mitigate application complexity, such 
as adaptive or mixed-initiative interfaces, and motivate the need 
for further research in these spaces. 

Our data analysis also uncovered limitations in the metrics 
commonly used to summarize large-scale application use by a 
user community. Past analyses have characterized application use 
through frequency counts of commands across the entire user base 
(e.g. [6,10]). Direct manipulation tools, however, skew this metric 
because tools such as the paintbrush may be used dozens or hun-
dreds of times in succession, with each stroke logged as an indi-
vidual command invocation. This work presents a set of additional 
perspectives to derive a richer picture of command use across a 
community of users. Specifically, we consider the number of us-
ers who have used a command, the number of sessions (log files) 
in which a command has appeared, and command use with re-
peated invocations collapsed to a single invocation. Respectively, 
these perspectives indicate a command’s relative popularity in the 
community, its relative importance across all tasks, and its impor-
tance within a particular session, thus providing a more holistic 
picture of application usage than raw command counts alone. 

Finally, previous long-term studies of content-creation applica-
tions have tended to characterize application use at a relatively 
fine level of granularity, often going no deeper than the aforemen-
tioned command counts across the entire user community. While 
such analyses provide important insights into large-scale applica-
tion use, they do not easily translate to an understanding of the 
higher-level tasks performed by users. Toward this end, we dem-
onstrate the novel application of a clustering technique to auto-
matically derive approximations of common tasks performed by 
the user community. This strategy yields sets of commands that 
clearly relate to particular tasks, such as photo retouching or 
graphic design work. Moreover, we show that the resultant sets of 
commands correspond well with user-supplied descriptions of 
their intended tasks, validating the overall approach. 

The rest of this paper is structured as follows. We start by 
reviewing related work on long-term application usage. Next, we 
describe ingimp and the ingimp dataset. We provide a basic 
summary of ingimp users, including the characteristics of their 
sessions (e.g., length, frequency of use) and the characteristics of 
the documents that they worked on. We then turn our attention to 
summarizing application use by considering the popularity of 
different commands by a number of metrics. Finally, we 
characterize user tasks through the previously mentioned 
clustering technique and show that user-supplied descriptions of 

 

1bjlafren@cs.uwaterloo.ca, 2bunt@cs.umanitoba.ca, 
3jswhisse@cs.uwaterloo.ca, 4claclarke@plg.uwaterloo.ca, 
5mterry@cs.uwaterloo.ca 



tasks validate this analytical approach. We conclude with a 
discussion of the implications of our findings. 

2 RELATED WORK 

In this paper, we are primarily concerned with characterizing 
long-term use of content-creation desktop applications. While we 
recognize the extensive literature studying large-scale use of 
games (e.g., [5]) and web applications (e.g., [11,16]), in this re-
search we are motivated to understand how feature-rich software 
is applied to ill-defined tasks. Past work in this particular space 
has examined long-term use of the UNIX command line, text 
editors, and software development environments, which we re-
view below. 

Greenberg analyzed data on the commands issued by 168 users 
in a UNIX command-line environment over a four-month period 
[6]. This research replicated a number of previous studies analyz-
ing UNIX command use, including that of Draper [4] and Hanson 
et al. [7]. In his work, Greenberg found that individuals used only 
a very small number of the available commands (a mean of 50 of 
the 1307 unique commands observed during the monitoring pe-
riod). Furthermore, he found very little overlap between individ-
ual users’ command vocabularies—the set of unique commands a 
user was observed using—with less than 3% of commands shared 
by more than 50% of users. Finally, Greenberg found that indi-
vidual users were likely to reuse commands that they had recently 
used, motivating the design of intelligent history mechanisms. 

In the domain of text editing, Whiteside et al. [21] logged key-
stroke-level data for two text-editor applications, one used by six 
secretaries, the other by eight knowledge workers, over periods of 
11 days and 2 months, respectively. The authors analyzed the 
frequency of individual keystrokes and transition probabilities 
between them. They found that 50% of users’ keystrokes were 
used for text entry and 25% were used for cursor movement. The 
degree to which keystrokes were used for cursor movement led 
Digital Equipment Corporation (DEC) to adopt the now-familiar 
inverted-T layout for cursor keys on their VT200 series terminals. 
Studies such as these underscore the positive impact that can re-
sult from understanding long-term, real-world use of applications. 

Studies of long-term application use have also informed the de-
sign of intelligent teaching systems. In a study that spanned three 
years, researchers instrumented the sam text editor to gather usage 
data from 2200 undergraduate Computer Science students at the 
University of Sydney, Australia [3,10]. By examining the logs of 
63 students who used the application for the full three years, the 
researchers were able to build models of individual users’ knowl-
edge suitable to support teaching systems. 

Also motivated by the goal of building models of user exper-
tise, Linton et al. analyzed usage logs from 16 users of Microsoft 
Word 6.0 over periods ranging from 3 to 11 months per user 
(mean 6 months) [12]. While they found that users’ command 
vocabularies are relatively small (a mean of 152 of the available 
642 commands), they also found that the size of a users’ com-
mand vocabulary is a poor measure of expertise since it is highly 
correlated with the length of time that the user has been observed.  

Finally, Murphy et al. analyzed usage logs for 41 developers 
using Eclipse 3.1 and 3.2, with a focus on use of Java Develop-
ment Tools (JDT) [14]. Usage logs were gathered for periods 
ranging from six to 125 days. This work provided the first account 
of how complex IDEs are used in the field, characterizing the 
frequency of use for various features and commands, and the 
work habits of Eclipse users. 

One of the most common trends found in past work is that 
command frequencies, when considered across an entire commu-
nity of users, follow a long-tailed distribution in which a very 
small number of commands account for the vast majority of ob-
served command use, with the remaining commands used very 

little [3,4,6,7,10,12,21]. At the same time, individual command 
vocabularies are found to be relatively small and idiosyncratic, 
with little overlap between users. As we will show, the ingimp 
dataset follows both of these trends closely. 

Finally, we note that past work has primarily focused on model-
ing user interaction at a relatively low-level. When higher-level 
tasks have been considered, researchers have often manually built 
models and examined how users conformed to them (see [9] for a 
discussion). We note an opportunity to apply clustering tech-
niques to automatically extract likely tasks using command histo-
ries alone. Similar techniques have been successfully applied to 
classifying web logs according to user type (e.g, “German users”), 
information goal (e.g., “Support”), or task (e.g. “Online shop-
ping”) [8]. However, to our knowledge this type of higher-level 
task extraction has not been applied to desktop applications or to 
usage data from content-creation applications, where tasks are 
much less well-defined than those typical of web use. 

Given this background, we now describe the ingimp dataset. 

3 THE INGIMP DATASET 

ingimp is an instrumented version of the open source GNU Image 
Manipulation Program [18]. All collected data is made publicly 
available on the project’s website. ingimp was designed to collect 
the following information: 

• Activity tags: optional user-supplied keywords describing how 
the user intends to use the application (prompted for at the start 
of each session) 

• System characteristics, including operating system, CPU, num-
ber of monitors, monitor resolution, and time zone 

• Document summaries, including the resolution and number of 
layers in the image 

• Commands that appear on the undo stack 

Users’ locales are not explicitly recorded, but can be deduced by 
examining the localized command names in log files to determine 
the likely locale. While this method does a reasonable job of iden-
tifying users’ locales, it does not perfectly differentiate between 
all locales (e.g., Canadian vs. British English). 

Users’ logs are automatically sent to the server when the appli-
cation closes. We consider each such instance of the application 
being opened and closed a session. To permit tracking of users’ 
activities across sessions, each user is assigned a randomly-
generated ID number when ingimp is first run, which is subse-
quently included in the log of each session. 

In the analyses that follow, we utilize the median and interquar-
tile range (IQR) statistics when summarizing data, as the data do 
not follow normal distributions. However, we also include the 
mean and SD to facilitate comparison with prior work. 

3.1 ingimp Deployment and Distribution 

ingimp was announced in 2007 at an open source graphics confer-
ence, the Libre Graphics Meeting (LGM), and is freely available 
for download from www.ingimp.org. Since ingimp is released 
under the GNU Public License (GPL), anyone is free to down-
load, install, and use it. Following its announcement, ingimp was 
featured on a number of websites, including Slashdot, GIMP’s 
French language project page, and a story published on an open 
source-themed news site. Of the various announcements, the 
Slashdot coverage had the greatest single impact in user uptake, 
rapidly increasing the user base in a week’s time.  

Given the factors discussed above, ingimp’s user base can be 
roughly approximated as Slashdot readers, GIMP users in general 
(with a slight emphasis on French users due to the French an-
nouncement), and those sympathetic to open source software. We 



provide more specific details of the user base as we analyze the 
collected data. 

In the sections that follow, we analyze the ingimp dataset as fol-
lows: 

• We characterize the user community, including users’ locales, 
time zones, computing environments, session lengths, and 
documents, 

• We analyze command use by the community using a number of 
metrics, and 

• We use an automatic cluster analysis technique to analyze the 
high-level tasks that users perform, and validate this analysis 
with user-supplied task descriptions 

Our analysis considers all log files collected in the 2-year period 
between May 15, 2007 and May 15, 2009. 

4 THE INGIMP USER BASE 

We begin our analysis by considering characteristics of the user 
base. One complication in doing so, however, is the presence of 
curious bystanders. By definition, open source software can be 
downloaded, installed, and used by anyone. As a result, it can be 
expected that a number of people will try out the application out 
of curiosity alone. These users may not use the application after 
an initial test, making it worthwhile to filter them out before doing 
more in-depth analysis. We start by describing our criteria for 
filtering out these users, and then analyze the remaining users. 

4.1 Defining Significant Users 

For the ingimp dataset, we define a significant user as anyone 
who has used the application and saved a document on at least 
two separate days. Using these criteria, the ingimp community 
consists of 211 significant users who have contributed 4198 logs. 
This group constitutes only 22% of all ingimp users, though these 
users produce 75% of the log files (4198 out of 5612). While this 
may exclude some legitimate users, the fact that this minority 
accounts for 75% of all log files indicates that the criteria are rea-
sonable. All subsequent data analyses use this significant user 
criterion to pre-filter the log files. Logs from the primary develop-
ers and researchers are also excluded from data analyses. 

4.2 Users’ Locales and Computing Environments 

Time zone and locale information indicate that ingimp users are 
both geographically distributed and culturally diverse: A total of 
15 different time zones and at least 9 different locales were re-
corded (we say “at least” because of the previously mentioned 
difficulties in precisely determining a user’s locale in all situa-
tions). The vast majority of users use an English (59%) or French 
(31%) locale. The remaining users’ locales include Italian, Ger-
man, Spanish, Russian, Czech, Finnish, and Japanese. 

The majority of ingimp users run Windows (73%) with the sec-
ond-largest group running Linux (26%). Almost all participants 
(99%) use only one monitor, with the remaining 1% using 2 
monitors. Screen resolutions vary greatly, ranging from 800x600 
to 3840x1200, with a total of 37 different resolutions. The 
resolutions used by more than 10% of users are 1280x1024 
(26%), 1024x768 (18%), and 1280x800 (10%). 

4.3 Characterizing Users’ Sessions  

As previously mentioned, a session corresponds to activity logged 
between the time the application is opened and when it is closed. 
The median number of sessions for an individual user was 11 
(IQR 15.5, mean 20, SD 26.0). As the large measures of spread 
indicate, the number of sessions for individual users varied 
widely, ranging from 1 to 168 (the significant user criteria were 

applied to the entire dataset, not just the dataset analyzed, leading 
to some single-session users in our analysis). 

The duration of sessions varied widely as well, ranging from a 
few seconds to several hours. The median session length for the 
community was 9 minutes (IQR 33 minutes, mean 59 minutes, SD 
3 hours 49 minutes). However, this measure simply refers to the 
duration for which the application was open. To get a sense of 
how much time was spent actively using the application, we re-
consider these figures with idle periods removed. Given that the 
mean time between commands was 19 seconds, we chose 120 
seconds as a conservative threshold for idle time. Once idle time 
is removed, Figure 1 shows that most sessions include very little 
active usage time. The median active usage time across sessions 
was 6 minutes (IQR 15 minutes, mean 16 minutes, SD 26 min-
utes). 

On the whole, while there were a small number of users who 
used ingimp frequently and actively for long periods, most used 
ingimp infrequently to perform short tasks. 

4.4 Characterizing Users’ Documents 

A total of 13,609 images were operated on during the data collec-
tion period. Looking at characteristics of the images, we see that 
the median maximum image resolution is 800x691 (IQR 
1131x1152, mean 1176x989, SD 1408x1008). These results sug-
gest that the primary uses of ingimp do not include working with 
high-resolution bitmap images from digital cameras. Also of in-
terest is the maximum number of layers1 per image, which pro-
vides an indication of the complexity of both the document and 
the user’s task. The median maximum number of layers in an im-
age was 1 (IQR 1, mean 4, SD 13.6). This implies that the major-
ity of ingimp users are not professionals, since professionals tend 
to work on complex documents and utilize many layers as part of 
their workflow [19]. 

5 COMMUNITY COMMAND USAGE 

Our data analysis thus far suggests that the majority of ingimp 
users performed relatively short, targeted tasks on documents of 
modest complexity. To gain a clearer picture of how participants 
used the application, we now consider command usage. 

ingimp records every command that is placed on the undo 
stack. It also logs Undo and Redo, the two meta-commands that 
operate on the undo stack. Across the entire application, there are 
approximately 500 different commands available to users. These 
commands include those that modify entire regions at once (such 

                                                                    
1
 Modern bitmap editors allow one to define multiple layers, 

where each layer contains a unique bitmap. These layers are com-
bined to create the visible image using compositing operations 
and masks. 

Figure 1. Histogram showing active usage time for sessions 

(session durations with idle time removed) 



as filters), direct manipulation tools (such as the paintbrush), and 
those that operate on properties of the document (such as layer 
compositing operations). 

In this section, we characterize the number of commands used 
in sessions, consider which commands were most commonly used 
by the community according to a number of metrics, and examine 
the size of users’ command vocabularies. In these analyses, we 
consider only sessions in which at least one command was logged. 
This criterion excludes a number of sessions for which no com-
mands were placed on the undo stack (1288, or 31% of all ses-
sions). (While these sessions lack commands appearing on the 
undo stack, this should not be interpreted as individuals not using 
the application. An analysis of user-supplied task descriptions 
revealed that many users report using the application to view im-
ages, convert images between file formats, or to obtain RGB color 
values of pixels. These uses of ingimp do not result in commands 
being placed on the undo stack, explaining the large percentage of 
sessions with no logged commands.) 

5.1 Command Statistics for Sessions 

The number of command invocations per session ranged from 1 to 
9236 with a median of 24 (IQR 107, mean 167, SD 480) (see Fig-
ure 2). If one counts repeated, successive invocations of the same 
command as only one command, the median is 14 (IQR 47, mean 
57, SD 123, min 1, max 1489). As we discuss in the next section, 
the main reason for this large disparity is the effect of direct ma-
nipulation tools on total command counts. Finally, if we consider 
only the number of unique commands used in a session, there is a 
median of just 6 commands per session (IQR 9, mean 9.2, SD 9.6, 
min 1, max 85). 

In conjunction with our previous analysis of active usage time, 
these numbers strongly indicate that users are engaging in rela-
tively simple, targeted tasks. For more extended or involved crea-
tive work, we would expect to see more active usage time, and for 
more complex tasks we would expect to see more command invo-
cations per session. 

Next, we look at the commands that were most commonly used 
by the community. We first describe how this analysis is more 
nuanced in applications that make heavy use of direct manipula-
tion as an interaction technique. 

5.2 A Note on Counting Commands 

Previous work reported command use mainly by counting the 
total number of command invocations across all log files 
[4,6,10,12]. However, the applications studied in this prior work 
made little, if any, use of direct manipulation as an interaction 
technique. 

As we previously mentioned, ingimp logs a command for each 
modification to the document. This logging strategy can cause a 
large variation in the frequency of log entries for different types of 
commands. For example, direct manipulation tools such as the 
paintbrush might be disproportionately represented in log counts 
because each individual paint stroke is recorded as a separate 
event. Conversely, applying a filter will only result in one logged 
command, regardless of how long the user spends adjusting set-
tings before it is finally applied. As a result, one cannot simply 
assume that the commands with the highest number of invocations 
are the most commonly used commands. Instead, it is necessary to 
consider command counts from a number of different perspectives 
to gain a more holistic picture of application use. 

Toward this end, we consider command usage in the following 
ways: 

• Raw command counts across the entire community (i.e., the 
total number of invocations across all users and sessions) 

• The number of users who have used a command at least once 

• The number of sessions in which a command appears at least 
once 

• Repeated, successive invocations of the same command col-
lapsed to a single invocation of that command 

5.3 Commonly Used Commands: Raw, User, and 
Session Counts 

Table 1 shows the top 20 commands ordered according to the total 
number of invocations across all users and sessions (i.e., raw 
counts). It also provides the command’s ranking in this ordering 

Command 

Name 

Raw 

Count 

Raw 

Rank 

%due to 

Repeats 

Percent 

Users 

User 

Rank 

Add Anchor 75858 1 96% 21% 44 

Undo 71301 2 59% 91% 1 

Eraser 60157 3 85% 47% 16 

Paintbrush 44300 4 82% 71% 4 

Bucket Fill 24591 5 89% 59% 12 

Smudge 21119 6 97% 25% 37 

Clone 12594 7 95% 18% 51 

Pencil 12499 8 81% 39% 23 

Rect Select 10721 9 15% 69% 6 

Fuzzy Select 9621 10 58% 44% 21 

Move Floating 

Selection 

9588 11 28% 70% 5 

Item visibility 9234 12 51% 62% 9 

Select None 9083 13 9% 78% 2 

Move Layer 7812 14 42% 62% 10 

Ink 7753 15 83% 11% 87 

Paste 7543 16 5% 74% 3 

Text 4949 17 68% 46% 20 

Add Layer 4873 18 19% 60% 11 

Anchor Float-
ing Selection 

4463 19 0.1% 63% 8 

Airbrush 4192 20 92% 17% 57 

Table 1: Command rankings by total number of invocations across 

the entire community. Shading indicates major points of difference 

between ranking methods. 

 
Figure 2. Histogram showing the number of command 

invocations per session (bins of width 10) 



scheme, which is simply the numbers 1–20 in increasing order. 
We introduce this ranking convention here to assist in understand-
ing other command rankings, discussed momentarily. 

The commands with the greatest number of total invocations 
are Add Anchor, Undo, Eraser, Paintbrush, and Bucket Fill. If we 
consider what percentage of these invocations are due to repeated, 
successive invocations of the same command (represented in the 
“% Due to Repeats” column), we see a large effect due to re-
peated invocations. In fact, more than half of the commands in 
this list can attribute their high frequency counts to repeated invo-
cations. For example, 96% of all invocations of Add Anchor are 
repeated invocations. 

The second most frequently invoked command is Undo. Given 
the relatively high repeat counts of this command (59%), it ap-
pears that Undo is partially used to return to a previous state after 
going down a path that proves to be suboptimal. This type of be-
havior is what one would expect if users work on ill-defined tasks 
[19]. 

Table 1 also provides data on the percentage of users who have 
used each command at least once, and the command’s correspond-
ing rank when ordered by this measure (shown as “user rank”). 
We have highlighted commands with a user rank greater than 20. 
The highlighting clearly shows the limitations of considering raw 
command counts alone when forming a picture of how a commu-
nity uses applications with direct manipulation tools. For example, 
Add Anchor, the top ranked command by raw counts, was only 
used by 21% of users. Similarly, the Smudge, Clone, Ink, and 

Airbrush tools were used by less than a third of the community. 
Their prominence in this ordering, then, should not be taken as a 
sign of their relative importance to the larger community. 

To balance the above perspective, we now consider commands 
according to two other metrics: the user rank, introduced above, 
and the session rank (the number of sessions in which the com-
mand is used at least once). A command’s user rank provides an 
indication of how widespread use of the command is in the com-
munity, while the command’s session rank indicates how vital it is 
across all tasks performed by the community. 

Table 2 shows the top 20 commands according to the user rank 
metric. In this ordering of commands, direct manipulation tools 
are noticeably less prominent. Instead of Add Anchor, Undo ap-
pears as the most widely used command, with 91% of users hav-
ing used Undo at least once. There is a fairly significant jump 
down to the next command, Select None (78%), followed by a 
more gradual drop-off. Paintbrush still appears prominently in this 
list, suggesting that many ingimp users spend at least some time 
painting or manually modifying pixels in images (e.g., touching 
up images). In fact, the commands in this list strongly suggest that 
many users at least occasionally use ingimp for content creation 
tasks, such as painting or graphic design, evidenced by the pres-
ence of Paintbrush, Bucket Fill, Eraser, and Text—the primary 
tools in ingimp for creating and modifying content. The remaining 
commands deal with selections and layers. Notably absent from 
this list are commands used for manipulating photographic im-
ages, such as those that alter the brightness, contrast, hue, or satu-
ration of an image. In our higher-level task analysis, however, we 
do find that basic image correction is an activity performed by a 
subset of ingimp users. 

Table 2 also lists the percentage of sessions in which the com-
mands have been used, along with the command’s session rank. In 
comparing these metrics, we see there is a fairly good correspon-
dence between the percentage of users using a command at least 
once and the number of sessions in which it has appeared. In fact, 
there is only one command that is present in the user rank top 20, 
but not the session rank top 20 (Select All), and its session rank is 
23. 

5.4 Command Coverage and Command Vocabularies 

Across all sessions, there were a total of 487,308 command 
invocations of 352 different commands. Since there are 
approximately 500 different commands available in ingimp, the 
user community is not exercising all of the available functionality. 
This finding is consistent with the findings of Hanson et al. [7] for 
the UNIX command line and for Linton et al.’s analysis of MS 
Word in which only 152 of 642 commands were used [12].  

In terms of users’ command vocabularies (the set of commands 
the user has been observed using [6]), we find that the size of an 
individual user’s command vocabulary ranged from 1 to 169, with 
a median of 27 (IQR 29, mean 34, SD 27.9), or less than 6% of 
the total number of avaliable commands. This finding, that users’ 
command vocabularies tend to be small in comparison to the 
number of available commands, is consistent with previous 
findings [6,12]. 

Considering the above observation that users’ command 
vocabularies tend to be small, along with the previous observation 
that users tend to use only a small number of unique commands in 
a given session, we see that ingimp offers far more functionality 
than is effectively utilized by most of its user population, 
particularly for any given session. 

5.4.1 Overlap in Command Vocabularies 

The sparse use of the application’s functionality raises the 
question of how much overlap there is between users’ command 
vocabularies. That is, do many users share a few small sets of 

Command 
Name 

Percent 
Users 

User 
Rank 

Percent 
Sessions 

Session 
Rank 

Raw 
Rank 

Undo 91% 1 62% 1 2 

Select None 78% 2 34% 3 13 

Paste 74% 3 34% 4 16 

Paintbrush 71% 4 26% 7 4 

Move Floating 
Selection 

70% 5 30% 5 11 

Rect Select 69% 6 35% 2 9 

Scale Image 63% 7 21% 12 29 

Anchor Float-
ing Selection 

63% 8 25% 8 19 

Item visibility 62% 9 24% 10 12 

Move Layer 62% 10 24% 9 14 

Add Layer 60% 11 28% 6 18 

Bucket Fill 59% 12 18% 13 5 

Crop Image 57% 13 24% 11 27 

Add Text 
Layer 

52% 14 16% 17 31 

Select All 51% 15 11% 23 52 

Eraser 47% 16 18% 14 3 

Redo 47% 17 17% 15 21 

Cut 46% 18 14% 18 24 

Remove 
Layer 

46% 19 17% 16 28 

Text 46% 20 12% 20 17 

Table 2: Command rankings by percentage of users who have used 

the command at least once. Shading indicates major points of 

difference between ranking methods. 



commands? To explore this concept, we consider the number of 
commands shared by different proportions of the user community. 

Table 3 shows that there is very little overlap in command vo-
cabularies across the entire community. There was no single 
command used by all users, though Undo was used by 91% of 
users. In fact, only 15 commands were used by greater than half of 
the population. Futhermore, 257 commands, representing 73% of 
the total number of distinct commands observed, were used by no 
more than 10% of the user community. We can conclude that 
users’ command vocabularies are fairly distinct, indicating either 
that ingimp is used for widely varying tasks by different users or 
that users have differing methods for achieving similar goals. This 
finding closely mirrors those of Greenberg [6], and Sutcliffle and 
Old [17] for the UNIX command line domain. 

6 IDENTIFYING HIGHER-LEVEL TASKS 

The frequency counts of commands explored in the previous sec-
tion provide perspectives on which commands are commonly used 
across the entire community, but they do not say much about the 
higher-level tasks performed by users, or which commands are 
commonly used together.  

One way to understand what tasks are performed by the com-
munity is to identify what sets of commands are frequently used 
together. However, this is a not a trivial task. While it is relatively 
easy to generate transitional probabilities from one command to 
another, previous work argues that this unit of analysis does not 
easily extend to describing higher-level tasks. For example, 
Greenberg [6], and Sutcliffe and Old [17] found that this approach 
leads to fragile models because users’ command vocabularies tend 
to be small and idiosyncratic—a result that we have found for 
ingimp users as well. 

In this section, we demonstrate how clustering of sessions can 
yield insight into the types of tasks being performed by the com-
munity, and identify commands that are frequently used together. 
The result of applying this approach to our dataset is compelling 
as the sets of commands it produces suggest specific tasks. Fur-
ther, we provide evidence for the validity of the results by exam-
ining the activity tags (the optional text-based task descriptions 
users could enter at application start-up) associated with sessions 
in the resultant clusters. We begin by describing the method used 
to cluster sessions. 

6.1 Clustering Sessions 

To determine common tasks, we take the following approach. We 
start by collecting sequences of commands that correspond to 
separate (though unknown) tasks. We then cluster these sequences 
based on some measure of similarity. Finally, we extract the fre-
quently occurring commands from the resulting clusters of se-
quences. 

The first step, partitioning command sequences by task, would 
be difficult if users performed multiple tasks per session. How-
ever, our previous analyses have demonstrated that most sessions 
are relatively short, have few command invocations, and include 
few documents. These trends suggest that individual sessions are a 
reasonable approximation of individual tasks. Accordingly, we 
apply our clustering technique on the granularity of sessions, to all 
sessions in which at least one command was logged (2906 ses-
sions in total). 

To perform the clustering itself, we adapted a clustering 
approach of Whissell et al., previously used to characterize docu-
ment similarity [20]. We first create a feature vector containing 
the command counts for each session. These vectors are then in-
put into 11 well-known clustering algorithms (e.g., k-means), each 
of which outputs 7 clusters of sessions. From these 11 sets of 7 
clusters, we would like to identify the “best” set of clusters. How-
ever, there is no objective function for making this determination. 
To address this, the Whissell approach works as follows. For each 
set of clusters produced, the clustered sessions are used as labeled 
training data to train a classifier for classifying sessions into clus-
ters. The accuracy of each classifier is determined using ten-fold 
cross-validation. To address the problem of a trivial classifier that 
places everything in the largest cluster, the accuracy score is nor-
malized by the number of sessions in the largest cluster. The set of 
clusters with the highest final accuracy score is considered the 
best set of clusters. 

From each of the resultant clusters of sessions, we identify the 
12 most frequent commands in each cluster (using the session 
rank metric) to create seven different task sets—sets of commands 
that typically appear with one another. Because we are clustering 
sessions, a single command may appear in multiple task sets. 
However, this is a desirable property since different tasks natu-
rally share commands. 

Table 4 shows the seven task sets produced by applying this 
technique to the ingimp dataset. Inspection of the task sets sug-
gests particular user activities. For example, the first cluster sug-
gests fairly basic photo manipulation tasks, such as rotating, resiz-
ing and scaling. It also includes commands typically used for 
photo retouching, such as Levels (used to adjust an image’s 
brightness and color balance), and Unsharp Mask, a filter used to 
sharpen images. The second cluster’s task set suggests a particular 
operation: pasting an image into the current document from the 
clipboard (which results in a floating selection), choosing a place 
for the pasted image (Move Floating Selection), and then anchor-
ing it to the page (Anchor Floating Selection). In the next section 
we find that user-supplied activity tags provide a more detailed 
picture of what users are doing in this cluster. 

The third cluster’s task set suggests working with text in an im-
age (evidenced by Text, Add Text Layer, and Move Text Layer), 
and the fourth cluster’s task set suggests use of the Paths tool 
(evidenced by Add Path, Add Anchor, and Drag Anchor). The 
fifth through seventh clusters collectively suggest painting and 
graphic design tasks, though more specific activities are less clear. 

6.2 Activity Tag Keywords for Clustered Sessions 

To validate the effectiveness of the clustering, we examined users’ 
activity tags. Example tags entered by users include “photo ma-
nipulation”, “screenshot editing”, “resizing”, and “Logo creation”. 

In total, 608 of the 2906 clustered sessions included activity 
tags. To summarize these activity tags, we broke them into indi-
vidual keywords and counted keyword occurrences for each clus-
ter. Since many keywords occur in different tenses (e.g., “resize” 
and “resizing”) or singular and plural (“screenshot” and “screen-
shots”) we manually stemmed all keywords to their simple, non-
plural present tenses (e.g., “crops” and “cropping” both become 
“crop”). We also filtered out common stop words such as “for”, 

 

Proportion of users Commands % Commands 

90–100% 1 0.3% 

80–90% 0 0% 

70–80% 4 1.1% 

60–70% 5 1.4% 

50–60% 5 1.4% 

40–50% 7 2.0% 

30–40% 6 1.7% 

20–30% 17 4.8% 

10–20% 50 14.2% 

0–10% 257 73.0% 

Table 3. The number of observed commands shared by different 

proportions of users 



“and”, and “the”, as well as “image”, which occurred frequently 
across all clusters and does not indicate any particular activity. 
The ten most frequently occurring keywords for each cluster are 
shown in Table 5. 

Our first observation is that, while some keywords such as 
“photo”, “web”, “crop”, and “correction” occur across clusters, 
the top keywords for each cluster are relatively distinct. Moreo-
ver, keywords that do occur across clusters often occur more 
prominently in one particular cluster (e.g., “resize” in the first 
cluster and “screenshot” in the second). 

As well as being distinct, the keywords appear to fit with our 
intuitions on the user activities represented by each cluster. For 
example, cluster 1’s task set includes commands for photo 
retouching, and it features activity tag keywords such as “photo”, 
“resize”, “crop”, and “edit”. 

The top keywords for cluster 2 also match our interpretation 
from the task set (pasting an image from the clipboard and then 
performing some operation on it) and tell a richer story. While 
cutting and pasting is not mentioned directly, the most common 
keyword is “screenshot”. This observation is significant because a 
common method of taking a screenshot in Windows is to use the 
“Print Screen” key on the keyboard, which copies an image of the 
screen to the clipboard so it may be pasted into an application. In 
fact, one activity tag for a session in this cluster was “pasting a 
screenshot”. 

Though there are fewer total keywords in cluster 3 than in other 
clusters, “logo”, “text”, and “design” are featured prominently, 

which match with the text operations suggested by the cluster’s 
task set in the previous section. 

Finally, clusters 5, 6, and 7, whose task sets included direct 
manipulation tools and suggested painting and graphic design 
activities, include keywords such as “design”, “draw”, “graphic” 
and “create”. The keyword “correction” is also featured 
prominently, which fits with direct manipulation tools such as 
Paintbrush, Eraser, and Clone (a tool often used to fix small 
blemishes in images). 

In sum, the resultant task sets both appeal to intuition and show 
good correspondence with users’ reported intentions. More 
importantly, they provide a richer picture of the activities 
performed by an entire community of users than command counts 
alone. 

7 DISCUSSION 

In this work, we have introduced new perspectives for understand-
ing long-term application use, and replicated a number of findings 
from previous work for a new application context.  The replica-
tion of past findings is important for two reasons. First, few such 
studies exist in the literature, and second, we examined use pat-
terns of an application with a qualitatively different style of inter-
action (namely, heavy use of direct manipulation). As such, this 
work helps to generalize the results of past work. 

Arguably, the most important replication of past findings con-
cerns the relatively limited use of available application functional-
ity. Because applications are designed to accommodate diverse 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

Scale Image Rect Select Add Text Layer Undo Undo Undo Undo 

Crop Image Select None Undo Item Visibility Bucket Fill Eraser Paintbrush 

Undo Undo Move Layer Add Layer Select None Move Floating 

Selection 
Paste 

Levels Paste Text Paste Rect Select Fuzzy Select Add Layer 

Resize Image Move Floating 

Selection 
Move Text Layer Add Path Move Floating 

Selection 
Select None Select None 

Rect Select Anchor Floating 

Selection 
Add Layer Add Anchor Paste Add Layer Move Floating 

Selection 

Select None Crop Image Paste Move Layer Anchor Floating 

Selection 
Paste Anchor Floating 

Selection 

Convert Image 
to Grayscale 

Cut Remove Layer Select None Clone Anchor Floating 
Selection 

Redo 

Rotate Image Move Layer Select None Remove Layer Item Visibility Paintbrush Rect Select 

Paste Add Layer Rect Select Set Preserve Trans Add Layer Rect Select Item Visibility 

Rotate Item Visibility Item Visibility Move Floating 
Selection 

Move Layer Move Layer Move Layer 

Unsharp Mask Scale Image Anchor Floating 

Selection 
Drag Anchor Paintbrush Item Visibility Eraser 

Table 4. Task sets for the seven clusters of sessions 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

(28) resize (29) screenshot (6) logo (8) design (7) design (7) create (11) design 

(15) photo (15) edit (5) photo (7) web (5) correction (5) correction (7) graphic 

(13) crop (12) web (4) text (6) graphic (4) graphic (4) web (7) draw 

(10) web (11) crop (4) make (6) edit (3) edit (4) graphic (6) test 

(9) screenshot (10) resize (4) edit (5) texture (3) create (4) edit (5) texture 

(9) edit (6) photo (3) design (4) make (2) web (4) design (5) resize 

(7) scan (6) mockup (3) create (4) gif (2) test (4) creation (5) create 

(6) screen (6) design (2) web (4) correction (2) retouch (4) background (4) edit 

(6) correction (6) cut (2) up (3) png (2) out (3) photo (4) correction 

(5) quick (5) up (2) test (3) photo (2) crop (3) icon (3) work 

Table 5. Frequently occurring activity tag keywords for each cluster (occurrence counts in parentheses) 



populations with varying tasks, they are becoming extremely 
packed with functionality. Yet, our study, like those of Hanson et 
al. [7], Greenberg [6], and Linton et al. [12], show that individual 
users require only a very small subset of this available functional-
ity. This observation has implications for interface design, as we 
describe. 

While there are certainly advantages to large monolithic appli-
cations (e.g., they can be marketed to a wide user base and can 
accommodate users’ changing needs), application designers must 
consider the impact of rich feature sets on usability. More specifi-
cally, prior research indicates that excess interface complexity has 
both quantitative and qualitative impacts on user experience. 
Quantitatively, the number of interface elements negatively im-
pacts task time, particularly for more novices users, whose visual 
search time is a linear function of the number of “relevant” items 
present (e.g., within a given menu or toolbar) [2]. As expertise 
increases, the impact of excess complexity on performance is 
lessened; however, for all but perhaps the most expert users, 
command selection time is always some function of the number of 
relevant commands available [2,15]. Qualitatively, many users, 
irrespective of their expertise, find large applications to be over-
whelming, frustrating and difficult to navigate [13].  

The difficulties users experience with large, complex applica-
tions, combined with the limited overlap in their command vo-
cabularies (another important result replicated in our study), indi-
cate that more emphasis should be placed on providing personal-
ization capabilities in interface designs. Outside of research proto-
types (e.g., [1,13]), personalization appears to be an afterthought 
rather than a first class-interface object, and is often tucked away 
in menu structures or offered in ways that are cumbersome to use. 
As an example, in the Microsoft Ribbon, only the very top toolbar 
can be personalized, and adding anything to this toolbar requires 
picking and choosing individual commands from long lists (such 
as an alphabetized list of all commands). This type of personaliza-
tion is likely to be difficult for novices, who might not know 
which commands are relevant to their tasks. 

One of the new methodologies that we have presented is the 
automatic clustering of sessions to determine which commands 
frequently appear together in an individual session. An obvious 
application of this technique is to better support personalization. 
By identifying groups of commands commonly used together, 
interface designers could enable coarse-grained personalization, in 
which users select groups of functionality rather than individual 
commands. In addition, if these clusters have higher-level inter-
pretations, as was the case for our clusters, they could be labeled 
with intuitive names (e.g., “painting tools” or “image correction 
tools”). Such labeling could facilitate personalization by novices, 
who are likely to have some notion of their tasks, even if they 
don't know the specific commands they will need. 

Finally, in our work, the application of a clustering technique to 
tasks was facilitated by the fact that individual sessions served as 
a reasonable approximation of individual tasks. This may not be 
the case for other application domains. Consider, for instance, an 
email application. Many users will open such an application once 
in the morning, and perform various tasks with it throughout the 
day. In cases such as these, the clustering technique that we have 
presented is still applicable, but a different measure of what con-
stitutes a task must be identified. In the email example above, 
clustering could be applied based on sequences of commands 
applied with little idle time between them, or on sequences of 
commands applied to particular email messages. 

8 CONCLUSION AND FUTURE WORK 

In this paper, we have added to the body of research describing 
large-scale, long-term use of feature-rich desktop applications by 
considering patterns of use of an application that makes heavy use 

of direct manipulation as an interaction technique. We have also 
introduced additional analytical perspectives for summarizing data 
from such applications. Finally, we have introduced a novel 
method of gaining a higher-level understanding of the types of 
tasks a community performs based on command usage alone. 

Our data motivates the need for continued work in user inter-
face personalization. In this respect, one promising area is the 
application of task-based clustering techniques to help identify 
sets of commands commonly used together by a user base. These 
sets of commands would then enable high-level, task-centric per-
sonalization interfaces. 

REFERENCES 

[1] Bunt, A., Conati, C., and McGrenere, J. Supporting interface custo-
mization using a mixed-initiative approach. Proc. of IUI 2007, ACM 
(2007), pages 92–101. 

[2] Cockburn, A., Gutwin, C., and Greenberg, S. A predictive model of 
menu performance. Proc. of CHI 2007, ACM (2007), pages 627–
636. 

[3] Cook, R., Kay, J., Ryan, G., and Thomas, R.C. A toolkit for apprais-
ing the long term usability of a text editor. Software Quality Journal 
4, 2 (1995), pages 131–154. 

[4] Draper, S.W. The Nature of Expertise in UNIX. Proc. of INTERACT 
'84, Elsevier North-Holland (1984), pages 465–471. 

[5] Ducheneaut, N. and Moore, R.J. The social side of gaming: a study 
of interaction patterns in a massively multiplayer online game. Proc. 
of CSCW 2004, (2004), pages 360-369. 

[6] Greenberg, S. The computer user as toolsmith: the use, reuse, and 
organization of computer-based tools. Cambridge University Press, 
New York, NY, USA, 1993. 

[7] Hanson, S.J., Kraut, R.E., and Farber, J.M. Interface design and 
multivariate analysis of UNIX command use. ACM Transactions on 
Information Systems 2, 1 (1984), pages 42–57. 

[8] Heer, J. and Chi, E.H. Separating the swarm: categorization methods 
for user sessions on the web. Proceedings of CHI 2002, ACM 
(2002), pages 243–250. 

[9] Hilbert and Redmiles. Extracting usability information from user 
interface events. ACM Comp. Surveys 32, 4 (2000), pages 384–421. 

[10] Kay, J. and Thomas, R.C. Studying long-term system use. Com-
munications of the ACM 38, 7 (1995), pages 61–69. 

[11] Kosala, R. and Blockeel, H. Web mining research: a survey. 
SIGKDD Explor. Newsl. 2, 1 (2000), pages 1–15. 

[12] Linton, Joy, and Schaefer. Building user and expert models by long-
term observation of application usage. Proc. of UM 1999, Springer-
Verlag New York, Inc. (1999), pages 129–138. 

[13] McGrenere, J. and Moore, G. Are we all in the same "bloat"? Proc. 
of GI 2000, (2000), pages 187-196. 

[14] Murphy, G.C., Kersten, M., and Findlater, L. How Are Java Soft-
ware Developers Using the Eclipse IDE? IEEE Software 23, 4 
(2006), pages 76–83. 

[15] Norman, K.L. The Psychology of Menu Selection: Designing Cogni-
tive Control at the Human/Computer Interface. Greenwood Publish-
ing Group Inc., Westport, CT, USA, 1991. 

[16] Obendorf, H., Weinreich, H., Herder, E., and Mayer, M. Web page 
visitation revisited: implications of a long-term click-stream study of 
browser usage. Proc. of CHI 2007, (2007), pages 597-606. 

[17] Sutcliffe and Old. Do users know they have user models? Some 
experiences in the practice of user modelling. Proc. of INTERACT 
'87, Elsevier North-Holland (1987), pages 35–41. 

[18] Terry, M., Kay, M., Van Vugt, B., Slack, O., and Park, T. ingimp: 
introducing instrumentation to an end-user open source application. 
Proc. of CHI 2008, ACM (2008), pages 607–616. 

[19] Terry, M. and Mynatt, E.D. Recognizing Creative Needs in User 
Interface Design. Proc. of the Fourth Conference on Creativity & 
Cognition, ACM Press (2002), pages 38–44. 

[20] Whissell, J.S., Clarke, C.L.A., and Ashkan, A. Clustering web quer-
ies. Proc. of CIKM 2009, (2009). 

[21] Whiteside, J., Archer, N., Wixon, D., and Good, M. How do people 
really use text editors? ACM SIGOA Newsletter 3, 1–2 (1982), pages 
29–40.  


