
Task-Centric Interfaces for Feature-Rich Software
Benjamin Lafreniere*, Andrea Bunt†, Michael Terry*

*University of Waterloo
Waterloo, Ontario, Canada

{bjlafren, mterry}@cs.uwaterloo.ca

†University of Manitoba
Winnipeg, Manitoba, Canada

bunt@cs.umanitoba.ca

ABSTRACT
Feature-rich software can be difficult to learn and use, and
current approaches to organizing functionality do little to
help users with performing unfamiliar tasks. In this paper,
we investigate the potential for alternative task-centric
interface designs that organize functionality around
specific tasks. To understand the potential of this approach,
we developed and studied Workflows, a prototype task-
centric interface design. Our findings suggest that task-
centric interfaces scaffold and guide the user’s exploration
of a subset of application functionality, and thereby help
them to avoid common difficulties and inefficiencies
caused by self-directed exploration of the full interface.
We also found evidence that task-centric interfaces enable
a different kind of application learning, in which users
associate tasks with relevant keywords as opposed to low-
level commands and procedures. This has potential
benefits for memorability, because the keywords
themselves describe the task, and scalability, because a few
keywords can map to an arbitrarily large procedure.
Author Keywords
Task-centric interfaces; feature-rich software; help;
tutorials; learning; search-based interaction.
ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Feature-rich desktop software relies on the WIMP (Win-
dows Icon Menu Pointer) paradigm, whereby functionality
is grouped into a hierarchical, taxonomy-like organization
via menus, toolbars, palettes, and tabs. This design has the
benefit of efficiently scaling to handle hundreds or thou-
sands of features, but has drawbacks when a user is learn-
ing (or re-learning) how to perform a task. In particular,
any given task may require functionality located through-
out the interface, making it difficult for novice users to dis-
cover how to complete non-trivial tasks.

In this paper, we investigate an alternative interface design
strategy in which a user’s current task serves as the central
organizing principle within the application. In this task-
centric interface, users communicate their intended goal,

and the interface responds by customizing itself for that
specific task. We study this approach via Workflows, a pro-
totype task-centric interface in which the user types in their
goal (e.g., “black and white with color”), and receives step-
by-step instructions embedded with the commands and
tools necessary for accomplishing that goal (Figure 1).

We validated this design with a study conducted over two
sessions. Our findings suggest that task-centric interfaces
support a qualitatively different problem solving strategy
that results in faster task completion times and reduced
cognitive load. These gains appear to come from adjusting
how users learn to perform an unfamiliar task. Whereas in
current interfaces, users attempt to synthesize a solution
from clues found during self-directed exploration of the in-
terface, the task-centric interface guides users to a relevant
subset of commands and procedures, which they can then
focus on understanding and enacting.

Our findings also suggest that task-centric interfaces en-
courage a type of application learning in which the user
associates tasks with relevant keywords, as opposed to
low-level commands and procedures. This keyword learn-
ing is arguably more natural and economical than what
must be learned in today’s interfaces. More specifically,
the keywords themselves are often the same, or overlap
with how the user would naturally describe their goals, en-
hancing their memorability. Furthermore, since the task-
centric interface maps these keywords to the required com-
mands for that task, the keywords can act as a substitute

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee. Request permissions from Permissions@acm.org.
OzCHI ‘14, December 02 - 05 2014, Sydney, NSW, Australia
Copyright is held by the owner/author(s). Publication rights licensed to
ACM. ACM 978-1-4503-0653-9/14/12 $15.00
http://dx.doi.org/10.1145/2686612.2686620

Figure 1. (a) The Workflows interface, (b) Instructions
containing actionable commands, (c) Keyword search,

(d) Links to return to recent searches.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2686612.2686620

for learning the individual operations and their order. In
this way, a short, memorable set of keywords can map to a
potentially large and complex set of tools and procedures.

Collectively, these findings suggest specific benefits to
mechanisms that re-organize a user interface for achieving
particular high-level goals.

In the rest of the paper, we first situate our research within
previous work, then present the Workflows prototype that
we developed. Next, we describe the study we conducted
to validate this design, and our findings. We conclude with
a discussion of avenues for future work.
RELATED WORK
This research builds upon prior work in the domains of
problem solving with feature-rich software; task-centric
help and assistance mechanisms; and personalizable user
interfaces.

Problem-Solving Strategies in Feature-Rich Software
Early HCI research showed that users of software are task-
focused: continuous progress toward goals is paramount,
and time spent on other concerns, including learning, is
minimized to the greatest extent possible (Carroll and Ros-
son, 1987; Carroll, 1990; Mackay, 1991).

More recently, work has shown that users of feature-rich
software favor trial-and-error strategies in which they ex-
plore the interface looking for relevant functionality (An-
drade et al., 2009; Novick et al., 2009; Rieman, 1996). Two
particular sources of difficulty associated with this ap-
proach are hidden affordances, where the interface does
not sufficiently communicate how to proceed with the task,
and false affordances, where perceived affordances in the
interface mislead the user (Novick et al., 2009).

Our study findings indicate that a trial-and-error approach
to learning can be particularly problematic when perform-
ing unfamiliar tasks, and show that task-centric interfaces
support an effective alternative to this approach.

Task-Centric Help and Documentation
Commercial applications often include in-application help
systems, some of which provide keyword search inter-
faces. However, the focus of these help systems is typically
on instructing the user on how to use individual features of
the application, rather than walking the user though spe-
cific high-level tasks. As a result, use of these systems is
typically seen as a deviation from the task at hand, and us-
ers are hesitant to use them (Rettig, 1991).

Arguably the most prevalent sources of task-centric help
today are web-based tutorials, which exist in abundance for
popular feature-rich applications, and act as a kind of com-
munity-created help system (Lafreniere et al., 2013). How-
ever, the quality of instruction on the web varies widely,
and this content is presented external to the application,
which our study suggests acts as a disincentive for its use.

Task-centric interfaces can be seen as embracing the ap-
proaches of in-application help and use of web-based tuto-
rials, to create an alternative interface for directly perform-
ing tasks in an application.

The customizations in our system share some similarities
with the HTML tutorials created using Adobe’s Tutorial

Builder, which included a ‘Show Me’ button to execute in-
dividual tutorial steps in Photoshop (Adobe Labs Tutorial
Builder, 2012). However, this past work did not address
how users would access these tutorials, and did not exam-
ine the impact of this kind of tutorial on learning and per-
forming unfamiliar tasks, which is the focus of this paper.

Finally, the HCI community has explored tutorial systems
that present instructional material in the context of an ap-
plication’s interface (Fernquist et al., 2011; Kelleher and
Pausch, 2005). These have been shown to allow users to
learn content from a tutorial faster (Kelleher and Pausch,
2005), and to better communicate domain knowledge
(Fernquist et al., 2011). However, the focus of these tech-
niques is on guiding the user through an artificial task for
the purpose of learning. In contrast, task-centric interfaces
are a mechanism to assist the user with completing their
own tasks.

In-Application Task Assistance
Existing work on task assistance mechanisms has focused
primarily on automation. The most widespread example of
a task assistance mechanism is the wizard—a linear dialog
composed of multiple steps that prompts the user for input,
and then performs the task for the user. Along similar lines,
DocWizards (Bergman et al., 2005) and CoScripter
(Leshed et al., 2008) allow users to create macros that may
include steps that prompt the user to take an action. Nu-
merous techniques have also been investigated to com-
pletely automate tasks through macros (Bergman et al.,
2005; Berthouzoz et al., 2011), machine learning (Berthou-
zoz et al., 2011; Grabler et al., 2009; Yeh et al., 2009), au-
tomatically personalizing scripts for the current user
(Leshed et al., 2008), or using the crowd (human workers)
to complete a task (Bernstein et al., 2010).

While these approaches can expand the set of operations
that can be completed with minimal input from the user,
there will always be tasks that cannot be completely of-
floaded to an automated system. Most prominently, ill-de-
fined problems require a human to judge the results of in-
dividual operations so they can adjust their actions accord-
ingly (Schön, 1983). Our task-centric interface design pro-
vides a general-purpose approach to task assistance that
can accommodate all tasks, even those with ill-defined
components.

Personalizable Interfaces
Finally, our task-centric interface design can be considered
an interface personalization mechanism, as it provides a
way to change the interface to suit the user’s needs. Exist-
ing personalization mechanisms include layered interfaces
that offer the user access to a small number of predefined
feature subsets (Shneiderman, 2002); adaptable interfaces
that give the user tools to customize the application to suit
their needs (Mackay, 1991; McGrenere et al., 2007); adap-
tive interfaces that model the user’s interests, preferences,
and usage to automatically tailor the interface to the user
(Findlater et al., 2009); and mixed-initiative approaches
that combine these various strategies (Bunt et al., 2007).

In contrast to existing work on interface personalization,
our design tailors the interface to support users in perform-
ing specific unfamiliar tasks. Existing personalization

mechanisms are not well suited to this use because they
require either the user to be familiar with the application’s
functionality (so the user can customize the interface), or
the system to model past behavior (so the system can per-
form reasonable customizations).

WORKFLOWS – A PROTOTYPE TASK-CENTRIC UI
Workflows was implemented as a modification of the open
source GNU Image Manipulation Program (GIMP),
though its design could be readily applied in other applica-
tions as well. The primary, visible modification to the in-
terface is an additional pane displayed alongside the tradi-
tional toolbox (Figure 1(a)). This pane allows the user to
enter keywords describing their goal, and receive a cus-
tomization of the interface catered to that specific goal. We
describe these features in greater detail next.

Keyword Search
When a user has difficulty determining how to complete a
task, a common practice is to use web-based search en-
gines to find relevant help resources, such as web-based
tutorials (Ekstrand et al., 2011; Kong et al., 2012;
Lafreniere et al., 2013; Grabler et al., 2009). This strategy
is compelling because the user can type their high-level
goal using natural language, then (in the ideal) is directed
to a web page that describes how to achieve the desired
result, step-by-step.

Inspired by this existing practice, task-centric customiza-
tions are accessed using a search bar at the top of the Work-
flows panel (Figure 1(c)). The user enters keywords into
the search box, and relevant customizations are shown in a
list displayed immediately below (Figure 1(b)).

For searches that return one or more workflows, the search
keywords are added to a list of “Recent Searches” (Figure
1(d)) that can be clicked to return to a search. This is in-
tended to make it easy for the user to return to a previously
used customization, or to quickly switch between custom-
izations during a complex task.

There are several features of keyword search that make it
particularly well-suited as a mechanism for accessing task-
centric customizations. First, it naturally handles providing
access to a large number of items. This is important, be-
cause the number of tasks that could be performed in a
given application is potentially unbounded.

Second, keyword search doesn’t require an overarching
taxonomical organization scheme to be imposed on cus-
tomizations (such as those used to organize commands in
hierarchical menu systems). This is desirable, because it is
unclear how one would go about classifying all the tasks
that users may wish to perform in an application.

Finally, users performing an unfamiliar task may not know
the domain-specific terminology associated with that task.
Keyword search allows the user to express their intent in
language that is natural to them, with the system producing
the workflows that it believes to be most relevant. In this
way, keyword search helps with crossing the gulf-of-exe-
cution between high-level goals and the low-level func-
tionality and procedures to achieve them (Norman and
Draper, 1986).

Task-Centric Customizations
In Workflows, customizations consist of a title, a short
summary describing their intent, and a series of step-by-
step text instructions (Figure 1(b)). References to com-
mands, tools, or dialogs in steps are actionable—they can
be clicked to execute the corresponding action, or display
the referenced dialog. If a dialog is already visible, the sys-
tem will highlight it by briefly flashing its border. With this
design, the interface directly describes how to perform a
task using each of the necessary tools.

Our design for task-centric customizations takes inspira-
tion from web-based tutorials, though it deviates from
them in several important ways. First, customizations are
presented in situ within the application. This is significant
because presenting instructions in a separate window
forces the user to read a step, remember it, and then apply
the instructions in the application—a process that is known
to lead to errors (Knabe, 1995). Second, references to com-
mands are actionable, so users do not need to locate refer-
enced functionality. Finally, we have standardized steps to
present short, succinct instructions. In contrast, web-based
resources vary greatly in their style of presentation and the
amount of detail, expository text, and visual aids that they
provide.
Authoring Customizations
In our prototype system, customizations are authored by
creating an HTML file and adding it to a shared file repos-
itory, which is then synced to individual installations of
Workflows. This approach served our needs for prototyp-
ing and testing, but more sophisticated authoring mecha-
nisms would be required for a deployed system.

For the purposes of our user study, we manually created a
set of customizations based on popular search queries for
GIMP, using a method that we explain in the next section.

USER STUDY
In this section, we report on a user study we conducted to
understand how a task-centric interface design impacts us-
ers’ problem-solving strategies for performing unfamiliar
tasks. Our study compares use of Workflows with existing
practices, namely the use of the unmodified GIMP appli-
cation combined with web search.
Study Design
Our study employed a within-subjects design with two
conditions. In the control condition, participants were pro-
vided with GIMP 2.8 and a web browser loaded to the
Google search page. Participants were instructed to use
whatever strategies they would typically use (including
web search if desired) to determine how to complete the
requested task. In the experimental condition, participants
were provided with Workflows and asked to use it as their
primary method for completing the task. They were not
permitted to use the web in the experimental condition. We
imposed these restrictions because our goal was to learn
how the task-centric interface would influence partici-
pants’ problem-solving strategies.

To simulate both the scenario of performing an unfamiliar
task for the first time, and returning occasionally to re-per-
form a task, the study consisted of two sessions for each
participant. In the first session, the participant performed

four tasks that were new to them (two per condition). In a
second session, held at least two weeks later (median 21
days, min 14, max 29)1, the participant returned and per-
formed the same tasks again. The mapping of the two sets
of tasks to conditions; the order in which participants ex-
perienced the two conditions; and the order of tasks within
each set were fully counterbalanced across participants.
Each participant experienced the same task and condition
ordering, and task-to-condition mapping, in both of their
sessions.

Tasks and Procedure
Each session lasted approximately one hour. The first ses-
sion began with a short demographic questionnaire. The
experimenter then gave participants a brief overview of the
major parts of the GIMP interface (the document, toolbox,
tool settings, color picker, layers, and undo command). In
the first session, an overview of the features of Workflows
was provided immediately before the participant started
this condition. In both sessions, before each condition, par-
ticipants completed a short practice task to (re)familiarize
them with the resources available in that condition.

In each session, participants completed the four tasks
shown in Figure 2. Each task requires use of some direct
manipulation operations, and so would be difficult to auto-
mate (making them representative of the type of tasks for
which we imagine task-centric interfaces would be partic-
ularly well suited). These particular tasks were also se-
lected to have minimal overlap in commands and tools, to
mitigate learning effects between tasks.

Figure 2. Before/after images for the four study tasks.

Each task was presented to the user as a before/after image
displayed on a second monitor, without any text describing
the task to be performed. We opted for this visual presen-
tation of the task to avoid biasing the participant with ter-
minology that they might use when searching for tools in
the interface, or when performing keyword searches on the
web or in the Workflows panel. Following each task, the
participant filled out a NASA Task-Load Index (TLX)
questionnaire to measure cognitive load (Hart and Staven-
land, 1988). At the end of the session, the participant filled
out a post-session questionnaire.

Participants performed tasks on a computer that we pro-
vided, within a virtual machine that could preserve state.
At the end of the first session, we preserved a snapshot of
each participant’s virtual machine to ensure that their

search histories for both Workflows and the web browser
were available in their second session.

The procedure for the second session was similar to the
first, except that participants were not given a tour of the
interface before each condition. Additionally, a semi-struc-
tured interview was conducted at the end of the second ses-
sion to elicit participants’ impressions of both conditions
across the two study sessions.

An experimenter was present throughout the study to make
observations, and to judge when the participant had com-
pleted a task and was ready to move on to the next task. If
the participant appeared stuck, or declared that they had
completed the task when their current document differed
significantly from the goal image, the experimenter would
ask “Is there anything else you could try?” or “Is there any
way you could make it look more like [the goal image]?”
The experimenter capped each task at 12 minutes.

Study Tasks and Available Customizations
To minimize bias that could arise due to our choice of tasks
or our means of authoring customizations for the experi-
mental condition, we developed the following procedure to
choose the study tasks and create customizations.

First, we identified common web-search queries for GIMP
using the CUTS technique (Fourney et al., 2011a), and
from these, selected the set of tasks for the study (choosing
a set of tasks with minimal tool/command overlap, and a
reasonable length for a lab study). Next, to create the cus-
tomizations, we executed each task’s associated search
query and selected the highest ranked web page that con-
tained step-by-step instructions for completing that task.
We then used a set of predefined templates and heuristics
to create a customization with the same procedure as was
documented on the selected page (see Appendix for de-
tails). This process was intended to ensure a reasonable de-
gree of equivalence in the procedures available in the two
study conditions, despite the differences in form between
web-based tutorials and the customizations served in
Workflows.

In addition to the four customizations created for the study
tasks, we included one customization for a practice task
and eight additional customizations for other tasks not
tested in the study. These additional tasks simulated ex-
pected real-world conditions where the user would need to
locate a relevant customization amongst many.

Participants
We recruited 16 participants from a university campus (10
male, 6 female) with ages ranging from 21–31 (median
24). Participants were recruited via postings on an email
mailing list targeted toward graduate students. Participants
were screened to ensure that they (1) had minimal experi-
ence with image editing software, and (2) were native Eng-
lish speakers (to control for variability in strategies that
may depend on ability to formulate search queries). All but
one participant took part in both study sessions. In appre-
ciation for their time, participants were given a $10 gift
card for an online retailer for the first session, and a $15
gift card for the second session.

1 There were no significant differences in the number of days
between sessions for any of our counterbalancing factors
(p > 0.40 for all factors).

RESULTS
We first discuss the impact of Workflows on performance
and self-assessments of cognitive load, then provide a de-
tailed qualitative and observational analysis of partici-
pants’ problem-solving strategies. We close with a discus-
sion of participants’ reactions to Workflows.

Task Times and Cognitive Load
In the first session, users completed 41 of 64 study tasks
within the time allotted, with more tasks completed in the
Workflows condition than in the control (23 vs. 18). In the
second session, users completed 48 of 60 study tasks
within the time allotted, with more tasks completed in the
Workflows condition than in the control (26 vs. 22). Nei-
ther of these differences in number of tasks completed was
found to be statistically significant. In our analysis of task
times presented below, we include all tasks.

To compare task completion times, for each participant we
averaged the time they spent on the two tasks for each con-
dition/session (Figure 3). For both the first and second ses-
sions, we observed significantly lower average task com-
pletion times in the Workflows condition.

For Session 1, the median avg. task time using Workflows
was 432 seconds (IQR 187), versus 538 seconds (IQR 210)
for the control condition. A Wilcoxon Signed-Rank test
showed this difference to be significant (W=11, Z=-2.783,
p < .01, r=0.49). This difference persisted in the second
session (where users were asked to repeat the same tasks),
in which the median avg. task time for Workflows was 211
seconds (IQR 205) versus 420 seconds (IQR 322) for the
control condition (W=13, Z=-2.669, p < .01, r=0.49).

Figure 3. Average per-participant task times

Our findings for perceived cognitive load mirrored the
findings for task completion times. The results of the
NASA-TLX, broken down by component subscales and
session are shown in Figure 4. For Session 1, a paired t-test
found a significant difference in the average cognitive load
for condition (t(15)=-2.7462, p < .05, Cohen’s d=0.69),
with the experimental condition showing lower cognitive
load than the control condition. This result was mirrored in
the second session, (t(14)=-2.1998, p < .05, Cohen’s
d=0.57). In terms of the individual subscales, Workflows
performed better than or was equivalent to the control con-
dition in all cases.

The results for task time and cognitive load indicate that a
task-centric interface design can significantly improve per-
formance and lower cognitive load as compared to current
strategies for performing unfamiliar tasks.

Our qualitative analysis provides a more detailed account
of where participants saved time when using Workflows,
and the sources of difficulty and frustration in the control
condition.

Figure 4. Average cognitive load for the six axes of the

NASA-TLX by condition and session.

Problem-Solving Strategies
We chose to analyze two of the study tasks, Selective Col-
orization and Reflection, in greater detail to gain insights
into the problem-solving strategies employed by partici-
pants. These two tasks were selected because they are the
more complicated tasks in each of the task sets, and thus
should reveal more about participants’ problem-solving
strategies.

The first author of this paper reviewed the video recordings
of the study sessions, making observations and assigning
qualitative codes to segments of time spent on various ac-
tivities. Qualitative codes were developed using an open
coding approach that was initially seeded with a coding
scheme developed on a small set of study videos. During
coding, the initial coding scheme evolved in minor ways.
When this occurred, the codes for earlier videos were re-
vised based on the updated scheme.

A summary of the resulting codes by study condition is
shown in Table 1. Note that some of the codes are specific
to one condition or the other (e.g., users in the Workflows
condition sometimes spent time performing searches that
returned no results, but this did not occur with web search
in the control condition). In sections that follow, we refer-
ence these results to ground our discussion.

High-Level Problem-Solving Strategies
Participants exhibited different overall strategies in the two
conditions. In the Workflows condition, participants al-
most universally started by using search to find a relevant
workflow, and then attempted to apply the workflow in-
structions to complete the task. We term this the guided-
and-constrained strategy—“guided” because participants
used the workflow instructions as a framework for com-
pleting the tasks, and “constrained” because we found that
participants spent less time using the interface outside of
the Workflows panel.

In the control condition, participants typically attempted to
complete the task with minimal assistance from external
help or documentation, even though a web browser with
Google Search was open and available to them. Instead,
they would often search through the interface trying to find
relevant functionality, or experiment with tool and com-
mands. We term this the interface-exploration strategy.

These two strategies are reflected in our qualitative coding.
In the Workflows condition, participants spent the largest
share of their time following instructions in the Workflows
panel (41% of time)1. If we also include time spent issuing
keyword searches (both successful and not), participants
spend 54% of their time interacting with the system pri-
marily through the Workflows panel. In contrast, the two
most common activities in the control condition were ex-
perimenting with tools and settings (27%), and looking
through menus, toolboxes, and dialogs (22%). These re-
sults indicate that the main activities in the Workflows con-
dition were related to seeking and receiving guidance,
whereas the main activities in the control condition were
related to exploring the interface. Furthermore, in the
Workflows condition participants spent significantly less
time looking through the interface for functionality (Wil-
coxon Signed-Rank test, W=70, Z=-3.029, p < .01,
r=0.38); experimenting with tools and settings (W=84.5,
Z=-2.876, p < .01, r=0.37); and using the full interface of
the application (W=31, Z=-4.253, p < .01, r=0.54).

1 This includes time spent reading and interacting with the cus-
tomization, but also includes interactions outside of the
Workflows panel if the participant is following an instruction
from a customization (e.g. “Select the greyscale layer in the

The difference in problem-solving strategies between the
two conditions demonstrates that Workflows provides an
alternative to self-guided exploration of the application’s
interface, and that task-centric customizations provide
guidance and scaffolding for the user’s efforts to perform
unfamiliar tasks.

Sources of Difficulty – Control Condition
We observed that the interface-exploration strategy was
associated with several common sources of difficulty in the
control condition, which we discuss below.

Cognitive Overload: Participants following an interface-
exploration strategy would appear to rapidly switch be-
tween: trying to find relevant functionality; experimenting
with functionality that they found to learn how tools and
commands function; and devising, evaluating, and reeval-
uating strategies for progressing toward the task goal. It’s
difficult to imagine how juggling all of these concerns
wouldn’t impose a high amount of cognitive load on the
user. This is consistent with the finding of higher self-re-
ported cognitive load discussed in the previous section.

Red-Herring Commands: Participants would sometimes
find commands that appeared to be relevant to the current
task, but were not appropriate. For example, a common so-
lution for the Reflection task is to make a copy of the text
layer, and then flip it vertically with either the Flip tool or
the Layer>Transform>Flip Vertically command. How-
ever, many participants’ explorations led them to instead
find the Image>Transform>Flip Vertically command.
This command flips the entire image, including all layers,
and was a source of great frustration for participants in this
task, who desired to flip only the currently selected layer.
Red-herring commands are an instance of the concept of
false affordances (Gaver, 1991).

Setting State Problems: After experimenting with tools
and settings, participants would seldom reset settings to
their defaults, which would leave the system in a non-typ-
ical state. This was a source of difficulty and frustration
when the side effects of previous explorations would cause
difficulty and unexpected results later on.

The task-centric interface design in Workflows addresses
these three observed sources of difficulty by indicating rel-
evant functionality and providing guidance in the interface,
thus leading to less unguided interface exploration.

Sources of Difficulty – Workflows Condition
In addition to the issues identified in the control condition,
we observed a number of common difficulties in the Work-
flows condition, which indicate areas where the task-cen-
tric interface design could be improved.

Formulating Search Queries: In the Workflows condi-
tion, a number of participants had difficulty formulating
keyword searches to find a customization for their task.
Because the pool of customizations available in the study
was small, this often resulted in searches that would return

Layers dialog.” requires the user to click a layer in the indicated
dialog). This was typically easy to determine because
participants would follow instructions sequentially.

W % C % Observation

41 -- Following instructions from a workflow.

17 27 Experimenting with tools or settings.

13 22 Looking for relevant functionality in menus,
toolboxes, settings dialogs, etc.

9 21 Using the full interface to perform an action
(excluding experimentation).

-- 18 Viewing a page in the web browser (control
condition only)

6 -- Keyword searches in the Workflows panel that
returned no results.

5 6 Keyword searches in the Workflows panel / web
that return results.

4 1
Other (not covered by other categories, e.g.
adjusting size of a window, switching between open
images, reading text in the interface).

2 1 Interacting with experimenter (e.g. experimenter
encouraging participant to continue with task.)

2 3 Time spent on error recovery using Undo (excluding
experimentation.)

2 -- Browsing workflows using the Recent Searches bar.

<1 <1 No obvious action being performed.

<1 <1 Using GIMP’s built-in help system.

Table 1. Summary of activities for the two study conditions
(W=Workflows, C=Control). Numeric values indicate the

percentage of time coded with that activity across all users.

no results, which was a source of frustration. Conversely,
in the control condition we observed participants making
extensive use of Google’s query completion feature; the
participant would type in search terms and carefully con-
sider the list of suggestions that was displayed, and then
either select a suggested query, or refine their query based
on terminology from the list of suggestions.

These findings suggest the value of adopting common
search engine features to help users to bridge differences
in vocabulary and find relevant customizations faster. For
example, one possibility is to adopt an autosuggest mech-
anism, further enhanced for the particular domain of the
application. For example, in the visual domain of image
editing, autosuggest could display preview images along-
side terminology; this could help users to recognize rele-
vant queries while also helping them to build an under-
standing of domain terminology as they used the system.

Skipping Text Instructions: A source of errors in the
Workflows condition came from participants’ skipping
over text instructions, such as “switch to the greyscale im-
age”, in customizations. In extreme cases, participants
treated the customization like it was a macro, where they
could simply click through each command to complete the
task, as can be seen in the following quote:

My first instinct is to go through really quick, you know what
I mean, and I’m not necessarily reading all the text. So I click
on the tool and I just think “I don’t have to read what’s in
between” and I click the next tool. And that’s me just being
kind of lazy, or whatever, but that was kind of the way that I
wanted to do it. But some of those tools, to make them work
properly, or fully understand what I had to do, I had to read
some of the text a little bit more, and that wasn’t necessarily
how I was going, just right out of the gate. [P10]

We suspect that this is the result of the higher visual weight
and interactivity of the actionable commands, which leads
users to focus on them more than the included text-based
instructions.

A potential design to address this issue would be to include
human action buttons for important text instructions in
customizations. When clicked, these buttons could pop up
text or animated instructions describing what the user
should do next. This would ensure that important manual
actions have the same weight as actionable commands.

Understanding the Dynamics of Tools and Steps:
Finally, we observed that participants sometimes had dif-
ficulty with understanding the dynamics of how to use a
tool, or how to perform a step in a customization. We found
this was especially problematic for steps that involved use
of direct manipulation tools.

This suggests that our text-only instructions are too limited
to fully communicate the dynamics of some tools and op-
erations, which is consistent with findings from previous
work (Chi et al., 2012; Grabler et al., 2009). The inclusion
of images or animated demonstrations accessible on-de-
mand (e.g., ToolClips (Grossman and Fitzmaurice, 2010)),
could help address this problem, while still keeping in-
structions succinct.

In summary, the difference in common sources of diffi-
culty between the two conditions serves to further rein-
force our observation that Workflows enables an alterna-
tive problem-solving strategy. Moreover, the common
sources of difficulty for the Workflows condition suggest
potential improvements to the design of the form of cus-
tomizations and mechanisms for accessing them.

Learning in Session 1
Our two-session study design allowed us to also gain in-
sights into how task-centric interfaces can support learning
and re-performing of tasks.

Overall, we found evidence to suggest that in both condi-
tions participants retained knowledge of relevant function-
ality in the second session. For the tasks we qualitatively
coded, participants spent significantly less time in the sec-
ond session looking through the interface for functionality
(Wilcoxon Signed-rank test, W=289.5, Z=2.896, p < .01,
r=0.37) and experimenting with tools and settings
(W=271, Z=2.920, p < .01, r=0.38).

Among participants who used search in both sessions (14
in the Workflows condition, 7 in the control), significantly
less time was spent on search in the second session as well
(W=159, Z=2.016, p < .05, r = 0.31). This suggests that
participants may have used more refined search strategies
in the second session, or simply remembered terms from
the first session. We found evidence for this in the post-
study interviews, where five of the 15 participants men-
tioned that remembering terminology from the first session
helped them to return to resources in the second session.
Some example quotes include:

I knew, oh last time I used “greyscale”, and that worked, so
I can just put “greyscale” and then boom. And I knew that
worked. [P4]

I think, for me what made the difference, is I knew… having
used it in the previous session I had a better idea of what
words to use and what to look for, I guess, the terminology.
[P5]

We found evidence of this strategy for use of the web in
the control condition as well, as in the following quote:

I use the Internet to do everything in my life that way. So it’s
almost like, you think, “Oh I don’t really need to remember
it because it’s on the Internet.” [P10]

This suggests that, in addition to learning relevant func-
tionality, participants also learn how to return to task-cen-
tric help resources. We term this keyword learning.

Though we observed this phenomenon in both conditions,
it is particularly significant for task-centric interface de-
signs, in which the dominant problem-solving strategy is
based around search. In contrast, users in the control con-
dition seemed hesitant to go to the web for help. For exam-
ple, P10 in the Reflect task started the second session by
saying “oh” quietly to himself as if he was trying to re-
member something. As he did so, twice he moved his
mouse pointer to the icon for the open web-browser in the
task bar, as if he was going to click, but then returned the
mouse to the interface instead. This internal debate lasted
for 10 seconds, after which he adopted an interface-explo-

ration strategy, searching for commands. Only after a mi-
nute more of exploring did he switch to the web browser
window and re-find a page from the first session. While
this is only one specific example, the lower number of par-
ticipants who searched in both sessions in the control con-
dition suggests a hesitance to go to the web for help, and a
corresponding overestimation by individuals of how much
progress they can make unaided.

Participant Reactions
In post-study interviews, we asked participants to discuss
the relative advantages and disadvantages of Workflows as
compared to the control condition.

The most appreciated feature of the Workflows system was
the actionable buttons (mentioned by 11 of the 15 partici-
pants), as the following quotes demonstrate:

Sometimes when I was working on my own, I had to scroll
over everything to find exactly what they meant. Whereas this
says, okay ‘Crop’ and then it gives you the actual tool, so
you’re not having to look. [P7]

It saves you having to look for [the commands] after you have
the instructions, you know what I mean. [P10]

(…) it gave step-by-step instructions on how to complete a
task, as well as even providing the buttons right there, if I
couldn’t find where the buttons actually were in the program.
Compared to the web, I mean you type in something and it
doesn’t tell you exactly where the tool is, sometimes it just
explains what the process is without actually, I guess, guiding
you through it. [P15]

As suggested by the quotes above, a key reason cited for
appreciating the actionable buttons was that they saved the
effort of locating commands in the interface (mentioned by
8 of those 11 participants). This suggests that a source of
gains for the Workflows condition is saving the time and
effort required to locate required commands in the appli-
cation’s interface.

Participants also expressed appreciation for having rele-
vant information and functionality presented in the appli-
cation itself:

One [advantage] is that it’s all in the same environment, so
you don’t have to open some other program to access this
workflow thing. Like, you don’t have to alt-tab. Like if you
only have one monitor, then you’re constantly switching back
and forth, it’s a hassle. [P11]

The succinct presentation of instructions in Workflows
was cited as an advantage as well:

[The Workflows panel] was pretty verbose, but not to the
point where, say, it was one of these [referring to a web tuto-
rial on screen] where all this could be easily said within like
two instructions within the workflows panel. This is what I’m
looking for, but there’s a whole bunch of [extra] stuff on the
webpage. [P14]

The main disadvantage that participants cited for Work-
flows was the quality of the search, as in this quote:

I think I mentioned it before, but sometimes no results would
pop up at all. Like when I was working on the cat one, I
thought a very basic way of finding it would be writing “one
color”, for example, and nothing showed up! [P15]

This is consistent with our observation that participants
had difficulty formulating search queries, and further sug-
gests that refinements to the search facility, such as auto-
suggest mechanisms, could be beneficial.

DISCUSSION AND FUTURE WORK
Our study results suggest that task-centric interfaces sup-
port a viable and efficient alternative to the interface-ex-
ploration strategy typically adopted by users of feature-
rich software. In particular, by indicating relevant com-
mands, providing guidance on how commands can be used
together for a task, and saving users the effort to locate
commands in the interface, the system enabled participants
to complete unfamiliar tasks faster and with reduced cog-
nitive load as compared to current practices. We also found
evidence that search-based interfaces enable users to learn
keywords to return to task-centric customizations, as an al-
ternative to learning the lower-level commands and proce-
dures themselves.

In this section we discuss the implications of our results in
greater detail.

An Alternative Learning Model
One way to view our study findings is that task-centric in-
terfaces realize gains by adjusting what needs to be learned
in order to carry out an unfamiliar task. Current interfaces
require the user to learn the locations of individual com-
mands and general knowledge about how individual com-
mands work, and then to synthesize this general knowledge
into a plan for how to carry out their task. This learning
model makes sense when the goal is to support regular use
of the software by expert users, who could be expected to
learn this general knowledge during an initial training pe-
riod. However, this approach imposes a great deal of cog-
nitive load and potential frustration on the user who may
simply desire to quickly reach a particular end goal.

Task-centric interfaces invert this learning model. Instead
of learning general knowledge about individual com-
mands, the interface supports learning task-specific
knowledge (e.g., the keyword searches representing a task;
how individual commands operate in the context of a task;
and the conceptual relationships between commands for
particular tasks). In the short term, this knowledge allows
the user to quickly reach specific end goals. In the long
term, this knowledge could be synthesized into more gen-
eral knowledge about individual commands and the system
as a whole.

Keyword Learning
Our observation that users learn keyword searches to re-
turn to task-centric help resources also suggests an alterna-
tive model for learning in feature-rich software. Previous
work has shown that users re-find information using key-
word search on the web (e.g., (Aula et al., 2005)), but this
finding is particularly significant for feature-rich software
for two reasons. First, by learning a small set of keywords,
a user can return to an arbitrarily large set and sequence of
commands to help them complete a task. In this way, key-
word learning has the potential to scale more gracefully
than learning the precise details of how to perform each

task. For performing unfamiliar or occasional tasks in par-
ticular, this strategy appears to have clear benefits over
learning commands and procedures.

Second, keyword learning has the advantage that the key-
words themselves act as a kind of description of the task to
be performed. In contrast, the commands necessary to
complete a task may have generic names, or may use do-
main-specific terminology that is foreign to the user, mak-
ing them more difficult to remember and recall. Because
keywords are intrinsically descriptive of the task to be per-
formed, they are likely to be more memorable.
Supporting À La Carte Usage
The alternative learning model supported by task-centric
interfaces is particularly well-suited to the growing num-
ber of sophisticated software applications that are available
for free to anyone who wants to use them (e.g., open source
applications such as GIMP, Inkscape, Blender, and Audac-
ity, or free-to-use applications such as TinkerCAD, 123D
Design, Pixlr, and Google’s Drive suite). The ease of ac-
cessing these applications naturally supports an à la carte
usage scenario, in which a sophisticated application is used
to perform only one or a small number of tasks, using only
a small percentage of its full functionality (Lafreniere et
al., 2010). In this scenario, supporting the user in quickly
performing unfamiliar tasks is arguably more important
than supporting more general learning of the application,
which may not provide enough benefit to justify the re-
quired time and effort.

Extending the work presented in this paper, it would be in-
teresting to look at how the task-centric interface approach
could be augmented to better support à la carte usage. One
avenue for future work would be to examine how support
could be provided before an application has been in-
stalled, to support users who have a goal in mind, but do
not yet know whether an application exists that is appro-
priate for their task. One could imagine a kind of task
search engine on the web that would help users to quickly
locate and install an application, and then provide a task-
centric interface within the application to guide the user
through performing the task.

It would also be interesting to look at how to support a
transition from à la carte usage of an application to more
general use. As an example, in Workflows this might be
achieved by fading away or hiding the step-by-step instruc-
tions over time, so a customization for a commonly used
task gradually becomes a succinct toolbar of commands.
Supporting a transition to more efficient interaction tech-
niques has previously been explored for command invoca-
tion (Kurtenbach et al., 1994), but we are unaware of any
work that has examined this problem for higher-level tasks.

Limitations and Areas for Future Work
In this work, we have focused on the scenario where the
user wishes to perform a task, and a single appropriate cus-
tomization is available in the task-centric interface. Having
established benefits in this initial scenario, there is an op-
portunity to examine how to best support situations where
the user must draw upon multiple customizations to com-
plete a task, or when the available customizations cannot
provide ideal support for a task.

We have also not examined how a comprehensive collec-
tion of customizations could be created for a task-centric
interface. For applications with large, established user ba-
ses, rich collections of tutorials already exist on the web,
which could potentially be converted into task-centric in-
terfaces. It may be possible to automate some aspects of
this conversion; recent research has demonstrated tech-
niques for automatically identifying command-task rela-
tionships from web search query logs (Fourney et al.,
2011b), which could act as a starting point for more de-
tailed task modeling. Crowdsourcing conversion of tutori-
als is another possibility that could be explored. Finally,
past work has proposed the idea that a community of users
of an application could collectively create, document, and
refine a set of interface customizations over time
(Lafreniere et al., 2011).

SUMMARY AND CONCLUSIONS
This paper has presented and evaluated an alternative task-
centric interface design for feature-rich software, which
provides keyword search access to task-specific interface
customizations. A study with two sessions spanning at
least two weeks indicates that this design can enable qual-
itatively different problem-solving strategies for perform-
ing new and infrequently performed tasks, with significant
gains in performance and reductions in cognitive load, as
well as insights into how a task-centric interface change
learning in feature-rich software.

APPENDIX
The templates in Table 2 were used to create customiza-
tions based on web tutorials, while preserving the overall
procedure of the tutorial. In addition, vague settings in the
tutorial were made explicit (e.g. “Choose a large brush”
was converted to “Choose a 150px brush”), and an “(Op-
tional)” flag was added to steps or procedures that weren’t
strictly necessary.

Template Example Text
Switch to <Short Description>
image.

Switch to the greyscale image.

Select the <Name> tool. Select the Crop tool.
Click <Command or Button> [to
<Desired Effect>].

Click Duplicate to create a copy
of the original image.

[Hold the <Ctrl-, Shift-> key and]
[<left, right>] [Click][and drag] to
<Desired Effect>.

Hold the Shift key and left click
where you want the line to end.

Use the following settings:
<Setting: Value pairs>

Use the following settings:
⋅ Width: 200 percent
⋅ Height: 200 percent

Set the <FG,BG> color to <Color>
[and the <FG,BG> color to
<Color>].

Set the foreground color to
Black.

Use one or more selection tools to
<Effect>. <All selection tools>.

Use one or more selection tools
to create a selection in the
desired shape. Rect Select,
Ellipse Select, Free Select, ...

In the <Name> dialog <Do Action>. In the Tool Options dialog, use
the following settings: …

In the Layers dialog, select the
<Short Description> layer.

In the Layers dialog, select the
greyscale layer.

Use the <Name> tool to <Desired
Effect> [by <Method>].

Use the Text tool to create some
text.

Table 2. Templates used to create customizations from web
tutorials. Bold text indicates actionable buttons.

ACKNOWLEDGMENTS
This work was supported by the Graphics, Animation, and
New Media research network (GRAND/NCE) and by the
Natural Sciences and Engineering Research Council of
Canada (NSERC).

REFERENCES
Andrade, O.D., Bean, N., and Novick, D.G. The macro-

structure of use of help. Proc. SIGDOC ’09, ACM, (2009),
143–150.

Aula, A., Jhaveri, N., and Käki, M. Information Search and
Re-access Strategies of Experienced Web Users. Proc.
WWW ’05, ACM, (2005), 583–592.

Bergman, L., Castelli, V., Lau, T., and Oblinger, D.
DocWizards: a system for authoring follow-me
documentation wizards. Proc. UIST ’05, ACM, (2005),
191–200.

Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent: a
word processor with a crowd inside. Proc. UIST ’10,
ACM, (2010), 313–322.

Berthouzoz, F., Li, W., Dontcheva, M., and Agrawala, M. A
Framework for content-adaptive photo manipulation
macros: Application to face, landscape, and global
manipulations. ACM Trans. Graph. 30, 5 (2011), 120:1–
120:14.

Bunt, A., Conati, C., and McGrenere, J. Supporting interface
customization using a mixed-initiative approach. Proc. IUI
’07, ACM, (2007), 92–101.

Carroll, J.M. The Nurnberg funnel: designing minimalist
instruction for practical computer skill. MIT Press, 1990.

Carroll, J.M. and Rosson, M.B. Paradox of the active user. In
Interfacing Thought: Cognitive Aspects of Human-
Computer Interaction. MIT Press, 1987, 80–111.

Chi, P.-Y., Ahn, S., Ren, A., Dontcheva, M., Li, W., and
Hartmann, B. MixT: Automatic generation of step-by-step
mixed media tutorials. Proc. UIST ’12, ACM, (2012), 93–
102.

Ekstrand, M., Li, W., Grossman, T., Matejka, J., and
Fitzmaurice, G. Searching for software learning resources
using application context. Proc. UIST ’11, ACM, (2011),
195–204.

Fernquist, J., Grossman, T., and Fitzmaurice, G. Sketch-
sketch revolution: an engaging tutorial system for guided
sketching and application learning. Proc. UIST ’11, ACM,
(2011), 373–382.

Findlater, L., Moffatt, K., McGrenere, J., and Dawson, J.
Ephemeral adaptation: the use of gradual onset to improve
menu selection performance. Proc. CHI ’09, ACM,
(2009), 1655–1664.

Fourney, A., Mann, R., and Terry, M. Characterizing the
usability of interactive applications through query log
analysis. Proc. CHI ’11, ACM, (2011a), 1817–1826.

Fourney, A., Mann, R., and Terry, M. Query-feature graphs:
bridging user vocabulary and system functionality. Proc.
UIST ’11, ACM, (2011b), 207–216.

Gaver, W.W. Technology Affordances. Proc. CHI ’91,
ACM, (1991), 79–84.

Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and
Igarashi, T. Generating photo manipulation tutorials by
demonstration. ACM Trans. Graph. 28, 3 (2009), 66:1–
66:9.

Grossman, T. and Fitzmaurice, G. ToolClips: An
investigation of contextual video assistance for
functionality understanding. Proc. CHI ’10, ACM, (2010),
1515–1524.

Hart, S. and Stavenland, L. Development of NASA-TLX
(Task Load Index): Results of empirical and theoretical
research. In P. Hancock and N. Meshkati, eds., Human
Mental Workload. Elsevier, 1988, 139–183.

Kelleher, C. and Pausch, R. Stencils-based tutorials: Design
and evaluation. Proc. CHI ’05, ACM, (2005), 541–550.

Knabe, K. Apple guide: a case study in user-aided design of
online help. Proc. CHI ’95, ACM, (1995), 286–287.

Kong, N., Grossman, T., Hartmann, B., Agrawala, M., and
Fitzmaurice, G. Delta: a tool for representing and
comparing workflows. Proc. CHI ’12, ACM, (2012),
1027–1036.

Kurtenbach, G., Moran, T.P., and Buxton, W. Contextual
Animation of Gestural Commands. Computer Graphics
Forum 13, 5 (1994), 305–314.

Lafreniere, B., Bunt, A., Lount, M., Krynicki, F., and Terry,
M.A. AdaptableGIMP: Designing a socially-adaptable
interface. Proc. UIST ’11 Adjunct, ACM, (2011), 89–90.

Lafreniere, B., Bunt, A., Lount, M., and Terry, M.
Understanding the roles and uses of web tutorials. Proc.
ICWSM ’13, AAAI, (2013), 8 pages.

Lafreniere, B., Bunt, A., Whissell, J., Clarke, C.L.A., and
Terry, M. Characterizing large-scale use of a direct
manipulation application in the wild. Proc. GI ’10,
Canadian Information Processing Society, (2010), 11–18.

Leshed, G., Haber, E.M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in
the enterprise. Proc. CHI ’08, ACM, (2008), 1719–1728.

Mackay, W.E. Triggers and barriers to customizing software.
Proc. CHI ’91, ACM, (1991), 153–160.

McGrenere, J., Baecker, R.M., and Booth, K.S. A field
evaluation of an adaptable two-interface design for
feature-rich software. ACM Trans. Comput.-Hum.
Interact. 14, 1 (2007).

Norman, D.A. and Draper, S.W. User Centered System
Design; New Perspectives on Human-Computer
Interaction. L. Erlbaum Associates Inc., 1986.

Novick, D.G., Andrade, O.D., and Bean, N. The micro-
structure of use of help. Proc. SIGDOC ’09, ACM, (2009),
97–104.

Rettig, M. Nobody reads documentation. Commun. ACM
34, 7 (1991), 19–24.

Rieman, J. A field study of exploratory learning strategies.
ACM Trans. Comput.-Hum. Interact. 3, 3 (1996), 189–
218.

Schön, D.A. The reflective practitioner: how professionals
think in action. Basic Books, New York, 1983.

Shneiderman, B. Promoting universal usability with multi-
layer interface design. SIGCAPH Comput. Phys.
Handicap., 73-74 (2002), 1–8.

Yeh, T., Chang, T.-H., and Miller, R.C. Sikuli: using GUI
screenshots for search and automation. Proc. UIST ’09,
ACM, (2009), 183–192.

Adobe Labs Tutorial Builder. 2012.
http://labs.adobe.com/technologies/tutorialbuilder/.

	Task-Centric Interfaces for Feature-Rich Software
	Abstract
	Author Keywords
	ACM Classification Keywords

	Introduction
	Related Work
	Problem-Solving Strategies in Feature-Rich Software
	Task-Centric Help and Documentation
	In-Application Task Assistance
	Personalizable Interfaces

	Workflows – A Prototype Task-Centric UI
	Keyword Search
	Task-Centric Customizations
	Authoring Customizations

	User Study
	Study Design
	Tasks and Procedure
	Study Tasks and Available Customizations
	Participants

	Results
	Task Times and Cognitive Load
	Problem-Solving Strategies
	High-Level Problem-Solving Strategies
	Sources of Difficulty – Control Condition
	Sources of Difficulty – Workflows Condition

	Learning in Session 1
	Participant Reactions

	Discussion and Future Work
	An Alternative Learning Model
	Keyword Learning
	Supporting À La Carte Usage
	Limitations and Areas for Future Work

	Summary and Conclusions
	Appendix
	Acknowledgments
	References

