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ABSTRACT
Existing approaches to trading off false positive versus false neg-
ative errors in input recognition are based on imprecise ideas of
how these errors affect user experience that are unlikely to hold
for all situations. To inform dynamic approaches to setting such a
tradeoff, two user studies were conducted on how relative prefer-
ence for false positive versus false negative errors is influenced by
differences in the temporal cost of error recovery, and high-level
task factors (time pressure, multi-tasking). Participants completed
a tile selection task in which false positive and false negative errors
were injected at a fixed rate, and the temporal cost to recover from
each of the two types of error was varied, and then indicated a
preference for one error type or the other, and a frustration rating
for the task. Responses indicate that the temporal costs of error re-
covery can drive both frustration and relative error type preference,
and that participants exhibit a bias against false positive errors,
equivalent to ∼1.5 seconds or more of added temporal recovery
time. Several explanations for this bias were revealed, including
that false positive errors impose a greater attentional demand on
the user, and that recovering from false positive errors imposes a
task switching cost.

CCS CONCEPTS
• Human-centered computing→ Human computer interaction
(HCI); Empirical studies in HCI; Interaction techniques..
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1 INTRODUCTION
Many novel and emerging input techniques have the potential
to misinterpret the user’s intentions, due to limitations in sens-
ing hardware (e.g., occlusion issues in computer vision), imperfect
recognition (e.g., due to models trained on limited data), or ambi-
guities in the input (e.g., the “fat finger” problem on touchscreens).
A particular challenge with input techniques that use a continuous
data stream is correctly discriminating intentional input actions
from all other user behavior. When this fails, two types of errors
can occur – false positives, where the system recognizes an input
action when the user did not intentionally perform one, and false
negatives, where the system fails to recognize an input action that
was intentionally performed by the user.

In gesture recognition, the most common approach for discrimi-
nating intentional input is to set a threshold on the score output
by the recognizer – scores above the threshold trigger the action
mapped to the gesture, while scores below it do not. However, false
positive and false negative errors can still occur if the threshold
does not perfectly separate intentional input actions from other
user behavior. Approaches to limiting these errors include choosing
gestures that are unlikely to naturally occur [7, 23], adding delimiter
gestures [8, 21], and using a bi-level thresholding approach, in which
a restrictive threshold is used for initial attempts at performing a
gesture, to cut down on false positive errors, coupled with a more
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permissive threshold following ‘near misses’, to enable the user
to succeed when trying the gesture a second time [10, 16]. While
these approaches can reduce the occurrence of errors, they do not
take into consideration the actions that happen (or don’t happen)
as a result. Just as a mouse click can activate many different actions
depending on the cursor’s location, a single gesture could activate
many different actions depending on context, and the cost of er-
ror recovery will depend on this gesture-action mapping. This is
important because, while false positive errors are often considered
worse than false negative errors [10], it is easy to imagine situations
where a false negative error has a high cost (e.g., the user is playing
a fast-paced game where every second counts; or trying to beat an
auto-play timeout on a streaming site), or a false positive error has
a low cost (e.g., when the accidental action is easily reversed).

Motivated by the above, the present work investigates (1) how
the temporal (i.e., time) cost of recovering from false positive and
false negative errors influences error type preference; (2) whether
there are hidden cognitive costs associated with these error types
when temporal cost is accounted for; and (3) how the higher-level
task the user is performing influences these costs. The idea is to lay
the foundation for error-cost aware input recognizers, capable of
dynamically adjusting their thresholds to prevent costly errors and
optimize the user experience.

An experimental taskwas developed inwhich participants search
a grid of tiles and select items using the mouse. False positive and
false negative errors are injected at a controlled rate, and the tempo-
ral cost of recovery for each of the two error types is manipulated.
By eliciting error type preferences over a range of differences in
temporal costs, we can model the effects of temporal cost on er-
ror type preference and reveal hidden cognitive costs and biases
not explained by temporal cost alone. A first study was run with
this standard task, followed by a second study with two additional
task variants – one with added time pressure, and one with added
attentional demands.

The results of these studies revealed several novel findings on
input errors and error type preference:

• The temporal costs of error recovery can drive both relative
error type preference and frustration.

• When temporal costs of recovery are equivalent, users ex-
hibit a bias against false positive errors, which can be equiv-
alent to 1.5 seconds or more of added temporal cost, suggest-
ing that the hidden cognitive costs of false positive errors
are greater than those of false negative errors.

• The bias against false positive errors is in-part driven by the
attentional demands of noticing when false positive errors
have occurred.

• Clusters of error occurrences (i.e., “peak effects”) and the
error type experienced at the end of a block (i.e., “end effects”)
can influence error type preferences provided retrospectively
after an experience.

Collectively, these results have implications for the design of gesture
recognizers, the user interfaces for recognition-based input systems,
and research methods for understanding the effects of recognizer
errors.

2 RELATEDWORK
This work complements and extends existing work on recognition
metrics and thresholds, as well as work developing utility models
and investigating cognitive biases in human-computer interaction.

2.1 Recognition Metrics and Thresholds
The overall goal of gesture recognition algorithms is to support
high rates of both precision and recall [15, 18, 26]. In this context
precision is the percentage of reports by the recognizer that a gesture
has occurred that are correct, whereas recall is the percentage of
performances of the gesture that are successfully caught by the
recognizer. A lower precision means more false positives (FPs),
while a lower recall means more false negatives (FNs). Precision
and recall are sometimes combined into an F1-score (the harmonic
mean of precision and recall), or alternative F-measures which put
greater weight on precision or recall [27].

The danger in focusing too closely on precision, recall, and over-
all error rates is that FP and FN errors may have very different
consequences for user experience. In the information retrieval com-
munity it is well-established that, for many applications, precision
and recall are not equally important to the user [22]. Recent work in
the ubiquitous computing literature has proposed a method to elicit
a weighting of precision and recall at design time, which can guide
the development of classifier algorithms [11]. Dove et al. called for
work to understand how precision and recall impact UX in systems
with machine learning [5], and Kocielnik et al. [12] demonstrated
the importance of finding the right balance between FP and FN
errors in AI-based systems, and investigated design techniques to
set user expectations and mitigate the impact of such errors.

Beyond balancing precision and recall at the application level, it
may be valuable to change the balance in real-time. Negulescu et al.’s
bi-level thresholding approach to gesture recognition biases toward
higher precision most of the time (i.e., fewer FPs at the cost of more
FNs), but relaxes the criterion for recognition after “near misses” in
which the recognizer score comes close to the threshold, to enable
users to succeed on a second attempt of a gesture following a FN
[10, 16]. Katsuragawa et al. demonstrate that this approach can
enhance precision and recall, and also improves user experience
by reducing instances where users encounter the same error more
than once in quick succession [10].

While past work has highlighted the importance of tuning the
precision-recall tradeoff based on how FP and FN errors impact
user experience, the goal has typically been a single tuning per
application. Bi-level thresholding accounts for some context but
does not consider the recovery cost of FP and FN errors to be
dynamic. In contrast, the present work lays the groundwork for a
precise and generalizable model of how error preference changes
with the temporal cost of recovery, to inform dynamic approaches
to setting recognizer thresholds.

2.2 Utility Models and Cognitive Biases
Horvitz’s foundational work on mixed-initiative interfaces [9] pro-
posed that an intelligent agent’s decisions regarding action versus
inaction should be based on expected utility, taking into account
the cost of misinterpreting the user’s goals. More recently, Banovic
et al. used expected utility theory to model how the cost of error
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influences pointing behavior [1], and Quinn demonstrated that a
number of cognitive biases apply to users during human-computer
interactions, and that their effects can be captured in economic
models of utility [17].

Subjective factors have also been shown to be important in how
users respond to the accuracy and error characteristics of interactive
systems. Roy et al. demonstrated that users will tolerate lower
accuracy if they are afforded greater controllability in systems with
intelligent assistance [20]. The intelligibility and interpretability
of software that uses machine learning has been identified as key
factors to user tolerance of errors [5, 24]. More broadly, studies of
‘peak-end’ effects have demonstrated that retrospective assessments
of experience can be influenced by the sequence in which otherwise
identical events occur [4, 6]. Though not the main focus of the
present work, the studies in this paper also find evidence of peak-
end effects.

In summary, past work has identified several subjective factors
that can influence the perception and acceptability of errors, but
there has yet to be an investigation of the relationship between
temporal costs and user preference for FP versus FN errors, or
whether there are inherent differences in how these error types
impact user experience. This paper reports the first study to capture
this relationship, and also provides further insights into hidden costs
and biases in how these errors are experienced by users.

3 STUDY SYSTEM
This paper focuses on a scenario where a single command ges-
ture can be used to activate different actions, as might occur in
an AR/VR system where a single free-hand gesture could invoke
many commands, depending on the hand’s position in the virtual
environment. This also mirrors standard WIMP interactions, where
the cursor location provides context, and the mouse click acts as
the command “gesture”. A mouse-based interaction was used for
the studies reported in this paper because, as a highly reliable input
method, FP and FN errors could be injected at a tightly controlled
rate.

A challenge to systematically studying FP and FN errors is that,
typically, the conditions in which these error types occur are differ-
ent, as are the actions required to recover from them. In an FN error
the user has intentionally performed an action to provide input
to the system, and the system has mistakenly ignored that action.
Recovery involves retrying the input action, along with any setup
needed to get back to a state where this is possible. In contrast,
with an FP error, the user did not intentionally provide input to the
system, but the system acts as though they did. Recovery involves
noticing that the error has occurred and reversing any undesirable
consequences of the unintended action. To investigate the effects
of these errors, a study task was developed in which recovery from
FN and FP errors require an identical sequence of actions, and the
temporal cost associated with each error type can be manipulated.

The study task (Figure 1) involved finding and selecting tiles
containing target items using the mouse. On each “page”, five ran-
domly selected tiles in a 3×3 grid are “enabled” (indicated in yellow).
The user is instructed to select a specified number of target items
(e.g., “Select 2 green circles”). The user can reveal the contents of an
enabled tile by dwelling the cursor on it for 1.25 seconds; during

Figure 1: The study task interface.

this “hover delay”, a radial progress indicator fills, and then the tile
flips over to reveal one of six icons (a green circle, red heart, orange
triangle, yellow star, blue moon, or purple plus). Once revealed,
the user has a short time (1.25 seconds) to select the tile with a
mouse click, after which the tile closes (flips back over), regardless
of whether the item has been selected or not. Selected tiles are
indicated with a blue outline. When the specified number of target
items has been selected, the system proceeds to the next page, with
a new random selection of five enabled tiles and a new number of
target items to select.

FN errors can be injected by the systemwhen the user has opened
a tile containing the target item and clicked to select it (Figure 2
top). The system acts as though no click was performed, preventing
the user from selecting the item before the tile closes. To retry, the
user must first re-open the tile. To manipulate the temporal cost
of error recovery, the typical hover delay for opening the tile is
replaced with a delay of duration CFN. To ensure that FN errors are
dealt with immediately, the system displays a message on the tile,
“Target icon not selected. Select it to continue.” and requires the user
to correct it before proceeding to check other tiles.

FP errors can be injected by the system when the user has re-
vealed a non-target item (Figure 2 bottom). Before the user can
move the cursor off the tile, the system acts as though a click was
performed, selecting the item and providing the standard click feed-
back (discussed below). To de-select the item, the user must first
re-open the tile. To manipulate the time-based cost of recovery,
the typical hover delay to open the tile is replaced with a delay of
duration CFP. To ensure that FP errors are dealt with immediately,
the system displays a message, “Non-target item selected. Deselect it
to continue.” and requires the user to correct it before proceeding
to check other tiles.

In the above approach, the actions to recover from the two error
types are consistent, and the study system can independently ma-
nipulate the error rate and temporal cost of recovery for each of
the error types. Moreover, it does so while preserving the character
of FN and FP errors – FN errors still occur in response to an inten-
tional action to select a tile, whereas FP errors occur when such a
selection action is not intended.
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Figure 2: Timelines from error injection (red) to recovery (green) for each error type.

3.1 Error Injection Approach
Each participant experienced a number of “blocks” of the above task,
consisting of 40 tile openings over a number of pages. Precisely
controlling the number of FP and FN errors in each block was
important for consistency. To achieve this, the sequence of items
to be revealed when opening successive tiles was pre-determined
at the start of each block, such that across all pages 50% of tiles
would reveal a target item regardless of the order in which the user
opened the tiles. For the tiles that revealed target items, a random
sequence of true/false values was generated, specifying whether
an FN error would be injected when the user attempted a selection.
The sequence contained the correct number of ‘true’ and ‘false’
values to create the intended number of FN errors, in a randomized
order. A similar procedure was used to generate a sequence of FP
errors for tiles that revealed non-target items.

3.2 Input Modality and Feedback
Mouse input was selected for several reasons. First, a properly
working mouse is free of both FN and FP errors, which enabled the
rate of these errors to be entirely controlled through error-injection.
Second, mouse input is highly accurate for targeting, reducing
user errors. Finally, it enabled the studies to be deployed remotely,
which provided efficient and safe data gathering during the global
COVID-19 pandemic.

A challenge of using mouse input is that the main feedback
mechanism for click input is the mechanical feedback from the
button on the mouse device. This posed a challenge for injecting FP
errors, which cannot provide such feedback. To address this, when
a click occurs (either by the user clicking, or an injected FP error), a
white circle is displayed around the click location, to indicate that
the system has received click input.

To prevent rapid clicking, which could enable participants to
recover from FP and FN errors in the study task without going
through the process of re-opening a tile described above, a 1.25
second lockout is imposed after legitimate clicks, FP clicks, and FN
errors. During this time, the cursor outline is temporarily changed
from black to grey to communicate that the cursor is in the lockout
state.

4 STUDY 1
Using the study system just described, an experiment was con-
ducted to understand the relative costs of FP vs. FN errors, and

Table 1: Demographics for Study 1 (N=44)

Age M = 38 (SD 10, range: 21 to 61)
Gender 30 Male, 14 Female

Handedness 38 Right, 6 Left
Pointing Hand 41 Right, 3 Left

Computer Hardware 24 Laptop, 20 Desktop
Pointing Device 44 Mouse

Gaming Frequency Daily (9), Weekly (16), Monthly (10),
Yearly or less (9), Never (0)

gain insights into hidden costs and drivers of the user experience of
these errors. The study was run on the Amazon Mechanical Turk
platform, which provides access to a large and diverse participant
pool [19].

4.1 Participants
52 participants were recruited and compensated $12 USD for the
experiment, which took 60-75 minutes to complete. After filtering
out participants that did not complete the study, and participants
whose duration for the main task conditions was greater than 3
standard deviations above the mean, or whose number of user
errors was greater than 3 IQRs above the median, 44 participants
were included in the analysis (Table 1).

4.2 Study Design and Procedure
The experiment followed a within-subjects design with factor COST
REGIMEN. Each cost regimen comprised a (CFN , CFP) pair defining
the delay in seconds to reopen a tile when recovering from FN and
FP errors, respectively. In choosing the reopening costs to test, we
wanted (1) costs that were realistic to the time it takes to recover
from common FP errors, such as accidentally opening a dialog, with
recovery taking <5 seconds; and (2) a consistently spaced set of costs
with a “resolution” fine enough to detect subtle biases against an
error type, but coarse enough that users would be able to perceive
differences between conditions. Pilot testing revealed that the range
of 0.25s to 3.25s in 0.5s increments met these requirements. The
cost regimens for the study are indicated in Table 2 – these values
were generated by fixing one cost at 1.75 seconds (the midpoint of
the range) and varying the other cost across the full range. This set
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Table 2: Cost regimens for Study 1.

CFN\CFP 0.25 0.75 1.25 1.75 2.25 2.75 3.25
0.25 ✓
0.75 ✓
1.25 ✓
1.75 ✓ ✓ ✓ ✓ ✓ ✓ ✓
2.25 ✓
2.75 ✓
3.25 ✓

of cost regimens results in seven unique deltas between CFP and
CFN (-1.5 to 1.5 in 0.5 second increments).

For each condition, participants completed the tile selection task,
opening 40 tiles over a number of pages. As mentioned previously,
the study system was designed such that 50% of tiles would reveal
a target item, and 50% a non-target item. In 6 target reveals, an
FN error would be injected when the participant tried to click the
item; and in 6 non-target reveals an FP would be injected. Errors
were not injected during error recovery actions – while it would
be realistic to do so, not injecting errors during recovery actions
allowed for tighter control over the temporal cost of recovery, and
greater consistency across blocks.

After each condition, the participant was asked three questions,
which form the dependent measures for the study. First, they were
asked “If you had to do this condition again, with everything exactly
the same except for the recognition errors caused by the faulty mouse
input, which option would you prefer: one less missed selection error,
but one more unintended selection error; or one less unintended selec-
tion error, but one more missed selection error” (Figure 3). Next, they
were asked to rate the strength of their preference (5-point scale
with levels “[No, Weak, Moderate, Strong, Very strong] preference”).
Finally, they were asked to rate their frustration level during the
block (7-point scale, from “Very Low” to “Very High”).

In terms of the overall study procedure, participants started by
completing a demographics questionnaire and receiving instruc-
tions for the study task. The instructions included text and short
video clips to explain: the user’s goal in the task, the mechanics

Figure 3: The dialog used to elicit error type preference after
each condition. The thumbnail on each button was a short
5-second animation demonstrating the error type.

for opening tiles and selecting items, the lock-out delay after a
click, the two error types the user would encounter, and how to
recover from each. This was followed by five short practice blocks:
one with no injected errors, one with 100% FN errors, one with
100% FP errors, and two blocks demonstrating how the time to
reopen tiles after each of the errors can vary, with cost regimens
(0.5, 3.0) and (3.0, 0.5) respectively. Next, participants started the
main data gathering portion of the experiment, in which they com-
pleted a block for each of the 13 cost regimen conditions (order
counterbalanced across participants in a balanced Latin square).
Each condition was followed by a break of at least 10 seconds. A
post-study questionnaire asked which type of error the participant
found more frustrating overall, and what they disliked about each
of the error types.

4.3 Data Analysis Approach
In terms of the general data analysis approach, error preferences
were analyzed based on how participants’ error preference re-
sponses (i.e., which error-type they preferred, and their strength
rating for that preference) varied in response to Reopen_Delta – the
difference in the manipulated tile reopening time for FP and FN
errors (i.e., CFP – CFN). Reopen_Delta captures how much greater
the time cost of an FP error is as compared to an FN error in a
block. If participants’ only consideration was time cost, they would
prefer FP errors when Reopen_Delta is less than zero, and FN er-
rors when it is greater than zero. Deviations from this behavior
reveal a bias not explained by time cost alone. Specifically, the bias
can be estimated by modeling how error preference responds to
Reopen_Delta and then examining the indifference point – the value
of Reopen_Delta at which error preference shifts from FP to FN.
Similar methods have been used in past work to quantify cognitive
biases associated with interaction techniques [17].

Data analysis was performed using mixed-effects models, as our
measurements were repeated within participants. Each analysis
included a random intercept per participant; it did not include a ran-
dom slope due to limited samples. Kenward-Rogers approximation
was used to compute degrees of freedom for F-tests.

Initial analyses revealed that some participants confused the
two error types. To address this, any participants who reported
preference for FP errors in the two blocks with the highest CFP
relative to CFN and preference for FN errors in the two blocks with
the highest CFN relative to CFP were removed prior to analyses (1/44
participants). Blocks for which the target number of errors (6 FP,
6 FN) was not injected were also removed (this could happen if a
participant made many user errors, but was rare, occurring in only
1/572 blocks).

4.4 Results
To provide a general sense of the tasks experienced by participants,
and to validate the effectiveness of the error injection approach
and temporal cost manipulation, this section starts by presenting
task time, error rates, and a recovery time for the two error types.
This is followed by a regression analysis of error type preferences
and frustration ratings, and an analysis of post-study questionnaire
responses.
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Figure 4: Box plot of median times from error occurrence to
fix (one data point for each error type / time cost, per partic-
ipant).

4.4.1 Task Time, Error Injection, and Recovery Time. The mean
duration of a block (not including practice blocks) was 183 seconds
(SD 53, min 128, max 910). The high max value may be explained by
participants “multi-tasking” or taking breaks during blocks, which
is difficult to control in remote studies. In terms of injected errors,
the correct number of errors (6 each of FP and FN) was injected
in 571/572 blocks (99.8%). User-caused errors were rare – across
all blocks, users had a mean of 5.3 (SD 6.9) instances where they
failed to click a target item before the tile closed, and 3.0 (SD 2.8)
instances where they selected a non-target item.

To validate that the manipulation of temporal cost of errors was
effective, we compared the median times from error occurrence to
recovery between the two error types, for each manipulated tile
reopening time (Figure 4). Examining the box plots, we do not see a
systematic difference in recovery time between the two error types.

We also analyzed the difference in the medians of measured time
to recover from FP vs. FN errors for each unique participant/cost-
regimen (Figure 5). A regression line fit on this data is very close
in intercept and slope to x = y, indicating that the tile reopening
time was effective at manipulating the difference in recovery time.
Specifically, recovering from FP errors took a median of only 50
milliseconds longer than FN errors (IQR 654ms).

4.4.2 Error Preference. Following each condition, participants pro-
vided a forced-choice preference for an error type, followed by a
strength rating for that preference. Coding responses with strength
rating (“No preference”) as neutral, participants preferred FN errors
in 347/558 blocks (62.2%), FP errors in 187/558 blocks (33.5%), and
were neutral in 24/558 blocks (4.3%). That FP errors were preferred
in half as many blocks as FN errors even though reopening costs
were balanced across conditions suggests a bias against FP errors
that cannot be explained by the temporal cost of errors alone.

To quantify the bias against FP errors, a logistic regression model
was fit to the response data, with preference for FP errors as the
outcome variable, a fixed effect Reopen_Delta (the difference in
tile reopening time between error types, see Section 4.3), and Par-
ticipant_ID as a random effect (Figure 6 left). Reopen_Delta was
found to be a significant predictor (X2(1)=35.705, p < .0001). The

Figure 5: Difference in measured error recovery time be-
tween FP and FN errors (y-axis) vs. difference in manipu-
lated tile reopening time between FP and FN errors (x-axis).
Blue line: regression fit. Red line: x = y.

indifference point – the value of Reopen_Delta at which the model
predicts error preference will shift from FP to FN – occurs when Re-
open_Delta is -1.55 seconds (95% confidence interval: [-2.9s, -0.6s]),
suggesting a bias against FP errors equivalent to ∼1.5 seconds of
added recovery time.

A weakness of the logistic regression model is that it does not
consider the strength of preference ratings provided by participants.
To address this, a weighted preference for FP errors was computed
by multiplying the strength responses (0=No preference, to 4=Very
strong preference) by error type preference (+1 for FP, -1 for FN),
yielding values on a scale from -4 to +4. A mixed-effects linear
regression model was fit with weighted preference for FP errors
as the outcome variable, Reopen_Delta as a fixed effect, and Par-
ticipant_ID as a random effect. Reopen_Delta was found to be a
significant predictor (F(1,514.09)=41.948, p < .0001). Examining the
model fit using this approach (Figure 6 right), the indifference point
occurs at -1.43 seconds (95CI: [-2.6s, -0.5s]), indicating a bias against
FP errors consistent with the logistic regression model above. For
the remainder of error preference analyses in this paper, weighted
preference for FP errors is used as the outcome variable, since it
captures both the error preference and strength responses.

The above analyses indicate that the temporal cost of the two
error types was a significant driver of error preference. In addition,
the apparent bias against FP errors suggests that temporal cost is
not the sole driver of error preference. In the coming sections we
seek to understand what other factors may be influencing error
preference, and to what degree.

4.4.3 Frustration. To investigate whether the temporal error costs
associated with FP and FN errors are also driving frustration in the
task, a linear mixed-effects model was fit with outcome variable
Frustration (participants responses to the frustration question), fixed
effects CFP and CFN, and Participant_ID as a random effect. The
model indicated a significant positive effect of CFN (F(1,513.00) =
9.96, p < .01), but not of CFP (F(1,513.03) = 0.01, p = .92). Given the
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Figure 6: Error preference models. Left: mixed-effects logistic regression on FP preference; Right: Mixed-effects linear regres-
sion on strength-weighted FP preference. Data points jittered to show density. Error bands indicate 95% confidence intervals.

apparent bias against FP errors as a driver of error preference, this
is surprising. It may be that the bias against FP errors is strong
enough that the reopening cost associated with those errors was
immaterial, at least for the set of costs tested in this experiment. In
Study 2, a wider range of cost regimens is tested to investigate this
further.

4.5 Post-Study Questionnaire Results
The post-study questionnaire asked participants: In general, which
type of recognizer error did you find to be more frustrating? In re-
sponse, 30/44 selected false positives, 11/44 selected “Both were
equally frustrating”, and only 3/44 selected false negatives. Partici-
pants were also asked to briefly explain what they disliked about
each error type. An open-coding approach was used to identify
common themes, which are reported in the sections below.

4.5.1 Common Themes for Both Error Types. Across both FP and
FN errors, the most common rationale for disliking an error type
was the added time to recover, or that the error impeded progress
on the task (mentioned in 22/44 FP comments, 18/44 FN comments).
Closely related, participants expressed that they disliked having to
“backtrack” or duplicate effort (9/44 FP, 7/44 FN). Finally, participants
expressed a dislike for the system acting counter to their intentions,
ignoring a click they knew they had made, or acting as though they
had clicked when they knew they had not (12/44 FP, 13/44 FN).

4.5.2 False Positive Specific Themes – Attention Cost, Effects of
Task Context. For FP errors, five participants suggested that it was
challenging to notice these errors when they occurred, e.g:

[FP] errors weremore frustrating. I had look for the items
getting selected for no reason. That was very annoying.
– P162

I felt like I was always on edge and anticipating one of
these when I opened a box and it wasn’t the green circle.
I simply dreaded these more for whatever reason. I can’t
pinpoint why, but they are much more frustrating. –
P143

These comments suggest that FP errors force the user to be more
attentive. This makes sense, because FP errors do not occur in re-
sponse to the user intentionally performing an action. As a result,

the user must expend cognitive resources to monitor for their occur-
rence. Related to this point, two participants mentioned an added
effort to move the mouse back to the affected tile if they did not
notice the error quickly, e.g.:

I disliked [FP errors] as I’d often have to move the cursor
back to correct it because I didn’t notice the error right
away. – P152

It is important to note that the design of the study task may have
reduced the attention required for noticing FP errors, as compared
to potential real-world systems, since FP errors only ever occurred
immediately following the reveal of a non-target item. The effort
required to identify the consequences of an FP error were also
minimized, because the study system clearly indicated the tile where
a correction must be made. Real-world systems are unlikely to have
this type of self-awareness, potentially leading to more severe costs.

A second notable theme was that FP errors were seen as worse
because they occurred on tiles that did not contain the target item,
or conversely that FN errors were viewed less negatively because
they occurred when the user has found the target item (mentioned
by 10/44 participants, across both error types), e.g.:

[. . .] I think [FN errors] were far less annoying, partly
just because psychologically, a [FN] still means you’ve
located the green circle and are almost done with that
part. It’s like getting pushed back a foot from the finish
line, whereas unintended selection [FP] is like getting
pushed back to the starting line as soon as you take off.
– P143

It may be that the recovery actions for FNs are viewed less neg-
atively because they are seen as contributing to progress on the
overall task (by selecting a target item), whereas FPs are seen as
additional work that could have been avoided. The following com-
ments support this explanation:

Missed selection [FN] errors did not bother me that much
since I knew I was going to have to select them anyway
– P133
I didn’t like the [FP errors] because it just seemed like
an extra step that was impeding my progress of only
selecting circles – P137

Another explanation is that the interruption of searching for target
items to deselect a non-target item imposes a task-switching cost
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Figure 7: Instructions for the study task variants. Time-Pressure variant (left); Split-Attention variant (right)

[14], which requires one to keep track of which tiles have already
been checked while recovering from the FP error (imposing a load
on memory and retrieval [13]). For FN errors, even though the
recovery requires the same actions as for an FP, it may be viewed
as part of the primary task as the user has no need to change their
task goal.

A final potential explanation is that finding the target item acts
as a reward, which partially offsets the frustration of the FN error
that occurs immediately afterward.

4.5.3 False Negative Specific Themes – Error Attribution. Compar-
atively fewer themes stood out in participants’ comments on FN
errors. However, two participants made comments that suggest
they partially attributed these errors to themselves:

It felt that it was my error that the box was not selected,
only slightly less frustrating. – P154

I didn’t like that it slowed me down and not knowing if
I clicked it correctly or not. – P168

P154’s comment makes it clear that they were aware that FN errors
were not caused by them, even acknowledging that they were less
frustrating for that reason, but still states that they “felt that it
was my error”. P168’s comment suggests ambiguity about whether
the user or the system has caused these errors. True to how FN
errors typically manifest, participants detected FN errors primarily
through an absence of confirmatory feedback (the user feels the
feedback of clicking the mouse button, but the tile is not selected),
which may have created ambiguity about whether the user or the
system was responsible for the error. It is worth noting that the
study system did provide some additional feedback to enable users
to distinguish false negative errors – the cursor outline turns from
black to grey for a short time. Though this feedback was subtle, it
may be that were it not present, participants would more strongly
attribute FN errors to themselves. However, further research would
be needed to investigate this.

In summary, the questionnaire results are consistent with the
quantitative analysis, demonstrating a bias against FP errors. More-
over, the comments suggest several potential explanations for this
bias, and further insights into how these errors are experienced.

5 STUDY 2
The results of Study 1 suggest a bias against FP errors that may be
explainable by added cognitive costs over FN errors. However, only

one task was tested, and the tested range of temporal reopening
costs did not extend out far enough to fully capture the switch in
preference from FP to FNs. To address these limitations, and gain
insights into how high-level task may influence relative error type
preference, a second study was conducted.

5.1 Task Variations
Two variations on the Standard task from Study 1 were developed,
which maintained the tile search task while adding additional ele-
ments (Figure 7).

Time-Pressure (Figure 7a) – In addition to the standard task, a
progress bar is displayed at the top of the screen, with an animated
cat and five slices of pie. The progress bar counts down during
the task, and if it becomes empty, the cat “eats” a slice of pie, the
bar refills, and the process continues. After each page, there is a
4-second penalty for each slice of pie that has been eaten, the bar
refills, and all slices of pie are restored. The idea is to add a sense
time pressure to the task. The speed of the progress bar was tuned
such that the penalties would be rare if participants worked quickly.

Split-Attention (Figure 7b) – In addition to the standard task, the
user must monitor a changing word at the top of the screen. The
user is instructed to press a key on their keyboard whenever they
see an animal word. If they miss a word, an ‘X’ is added at the top
left of the screen. After each page, there is a 4-second penalty for
each ‘X’, and the ‘X’s are cleared. The idea behind this variant is to
keep the user’s attention split between the standard and secondary
tasks, as might occur when the user’s attention is not solely focused
on providing input to a system.

5.2 Study Design and Procedure
The study followed a mixed design, with between-subjects factor
TASK (Standard, Time-Pressure, Split-Attention), and within-subjects
factor COST REGIMEN. Given that Study 1 indicated a bias against
FP errors at the far limit of the differences between CFP and CFN
that were tested, a new set of cost regimens (Table 3) was chosen
to gather more data around the point where average preference
switched from FP to FN in Study 1. Note that CFN > CFP in 7 condi-
tions, CFN < CFP in 4 conditions, and CFN = CFP in the remaining 2
conditions.

The study procedure was similar to that of Study 1. For the
task variants, the set of practice blocks were conducted with the
Standard task (i.e., without the extra elements of the task variant),
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Table 3: Cost regimens tested in Study 2.

CFN \CFP 0.25 1.00 1.75 2.50 3.25 4.00 4.75
0.25 ✓
1.00 ✓
1.75 ✓
2.50 ✓
3.25 ✓ ✓ ✓ ✓ ✓ ✓ ✓
4.00 ✓
4.75 ✓

followed by the task variant instruction page (Figure 7), and a final
practice block with the task variant before the data gathering blocks
began.

5.3 Participants
52 new participants were recruited for each of the three tasks, which
took 60-75 minutes to complete. After filtering out participants who
did not complete the study, and participants whose duration for the
non-practice task conditions was greater than 3 standard deviations
above the mean, or whose number of user errors was greater than
3*IQR above the median, 142 participants were included in the
analysis (Table 4).

5.4 Results
Summaries of the three task conditions are shown in Table 5. In
terms of average block duration, Standard (225s) is between the
Time-Pressure (217s) and Split-Attention (241s). As in Study 1, the
error injection was correct in most blocks (>97.7% for all tasks). In
terms of task penalties (i.e., how often participants incurred a 4-
second penalty for working too slowly in the Time-Pressure task, or
missing words in the Split-Attention task), the Time-Pressure task
penalties are in a tight range, suggesting the task was manageable.
In contrast, the Split-Attention task has more penalties and a wide
IQR, which may suggest that some participants had difficulty with
the secondary task.

Prior to the analyses that follow, the filtering criteria for par-
ticipants and blocks from Study 1 (see Section 4.3) were applied,
removing 8/142 participants who had confused the two error types,
and 28/1841 blocks in which the correct number of errors was not
injected.

Figure 8: Strength-weighted error preferences for Study
2 (Standard, Time-Pressure, Split-Attention). Error bands
show 95% confidence intervals.

5.4.1 Error Preference. Participants’ weighted FP preferences by
Reopen_Delta and task are shown in Figure 8. As in Study 1, the
indifference point for each of the tasks occurs for Reopen_Delta
values less than zero, suggesting a bias against FP errors. However,
the magnitude of these estimates are lower than in Study 1, at
around -0.4s for the Standard task (95CI: [-2.0s, 1.3s]), -0.2s for
Time-Pressure (95CI: [-1.0s, 0.7s]), and -0.7s for Split-Attention
(95CI: [-3.9s, 2.4s]).

This data was analyzed using a linear mixed-effects model with
Reopen_Delta as a fixed effect and random effect Participant_ID.
Additionally, to test differences between the task variants and the
Standard condition, fixed effects were included for the two task
variants (coded as binary indicator variables), and for interactions
between Reopen_Delta and the task variant indicator variables.
This enabled us to test whether the task variants show significant
differences relative to the Standard condition, in terms of both the
slope and the intercept of how weighted FP preference responds
to Reopen_Delta. In terms of statistical tests, a significant effect
of Reopen_Delta was found (F(1,1577.29)=38.51, p < .0001). A sig-
nificant effect was also found for the slope (but not intercept) for
Time-Pressure (F(1,1577.22)=12.98, p < 0.001), suggesting that error
preference was more sensitive to differences in temporal error cost
for this task, relative to Standard. No additional significant effects
were found.

Table 4: Participant demographics for Study 2

Standard Task (N=50) Time-Pressure Task (N=49) Split Attention Task (N=43)

Age M = 34 (SD 10, range: 20 to 69) M = 35 (SD 9, range: 23 to 64) M = 35 (SD 10, range: 23 to 63)
Gender 38 Male, 12 Female 34 Male, 14 Female, 1 N/S 27 Male, 16 Female

Handedness 46 Right, 4 Left 42 Right, 7 Left 41 Right, 2 Left
Pointing Hand 49 Right, 1 Left 47 Right, 2 Left 43 Right, 0 Left
Computer Hw 20 Laptop, 30 Desktop 19 Laptop, 30 Desktop 23 Laptop, 20 Desktop

Pointing Device 50 Mouse 49 Mouse 43 Mouse
Gaming

Frequency
Daily (23), Weekly (18), Monthly
(4), Yearly or less (5), Never (0)

Daily (13), Weekly (18), Monthly (10),
Yearly or less (5), Never (3)

Daily (18), Weekly (9), Monthly (6),
Yearly or less (9), Never (1)
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Table 5: Summary statistics for Study 2, by task condition

Standard Task Time-Pressure Task Split Attention Task

Block Duration M=225 (SD 121, min 139,
max 2137)

M=217 (SD 83, min 136, max 986) M=241 (SD 90, min 147, max 886)

Correct # of Injected
Errors

637/649 (98.2%) 633/636 (99.5%) 543/556 (97.7%)

Task Penalties N/A Median=20 (IQR 13, min 8, max 88) Median=33 (IQR 46, min 7, max 305)

Table 6: ANOVA for mixed-effects model (outcome variable: weighted preference for FP errors)

Predictor Estimate F-statistic p-value

Reopen_Delta -0.337 F(1, 1576.31)=38.72 <.0001
Time-Pressure slope -0.280 F(1, 1576.23)=13.05 <.001

intercept +0.035 F(1, 135.34)=0.01 0.926
Split-Attention
(low-penalty)

slope -0.027 F(1, 1576.41)=0.08 0.778
intercept -0.858 F(1, 135.67)=3.50 0.064

Split-Attention (high-penalty) slope +0.322 F(1, 1577.17)=9.90 <.01
intercept +1.002 F(1, 136.08)=4.17 <.05

Given the wide range of task penalty counts across participants
for the task variants, a follow-up analysis was conducted to see
whether secondary task performance may be influencing error
preference. Mixed-effect models with outcome variable weighted
FP preference, fixed effects for Reopen_Delta and the number of
task penalties, and random variable Participant_ID were fit for
each task variant. For Split-Attention, the number of task penalties
was found to be a significant predictor of weighted FP preference
(F(1,40.39)=18.93, p < .0001). For Time-Pressure, no such effect was
found. Based on this, Split-Attention participants were divided into
two sub-groups – low-penalty participants (less than or equal to the
median), and high-penalty participants (greater than the median).

Re-running the analysis of weighted FP preference by Re-
open_Delta with Split-Attention divided, we see a more obvious
difference between task groups (Figure 9). Participants in Split-
Attention (low-penalty) exhibit a strong bias against FP errors,

Figure 9: Strength-weighted error preferences for Study 2,
with Split-Attention participants grouped based on task
penalties. Error bands show 95% confidence intervals.

equivalent to ∼2.7 seconds of added reopening time (indifference
point at -2.7s, 95CI [-5.6s, -0.7s]). In contrast, participants in Split-
Attention (high-penalty) exhibit little sensitivity to differences in
reopening time between the error types. In terms of statistical test
results (Table 6), we find a marginally significant effect for the Split-
Attention (low-penalty) intercept (p = .064), and significant effects
for the Split-Attention (high-penalty) slope and intercept. These
results may suggest that the Split-Attention participants comprised
two distinct groups – those who performed well on the secondary
task, and those who were overwhelmed by the dual-task paradigm,
leading to both poor performance on the word-identification task
and difficulty with assessing error preference after blocks.

In summary, the analysis suggests that the Time-Pressure vari-
ant did not significantly affect error preference, but for participants
who performed well on the Split-Attention variant, the bias against
FP errors was higher. This is consistent with the qualitative com-
ments from Study 1, which suggested that attentional demands
are increased by FP errors, which could make this error type more
frustrating in a task that demands more of the user’s attention.

5.4.2 Frustration. To investigate the effects of temporal error costs
on frustration, a mixed-effects model was fit with participants’ frus-
tration ratings as the outcome variable, CFP and CFN as fixed effects,
and Participant_ID as a random effect. Both CFP and CFN were found
to be significant predictors (CFP estimate +0.073, F(1,1578.2)=12.14,
p <.001; CFN estimate +0.055, F(1,1578.2)=6.99, p <.01). This sug-
gests that the temporal cost of both FP and FN errors is a driver of
frustration.

To analyze how frustration changed with error costs for the
task variants, a linear mixed-effects model was fit with frustration
ratings as the outcome variable, and a fixed effect Reopen_Sum (CFN
+ CFP) which captures the cost of both error types in one metric.
Additionally, fixed effects were included for each task variant group
(to capture their effect on the intercept compared to Standard), and
for interactions between the task variant groups and Reopen_Sum
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Figure 10: Frustration ratings by Reopen_Sum for Study
2, with Split-Attention participants grouped based on task
penalties. Error bands show 95% confidence intervals.

(to capture their effect on the slope compared to Standard). Par-
ticipant_ID was included as a random effect. A plot of the model
results is shown in Figure 10, and statistical test results are shown
in Table 7

Somewhat surprisingly, the model indicates lower frustration
ratings for Time-Pressure and Split-Attention (low-penalty) as com-
pared to Standard, with a significantly lower intercept for Time-
Pressure (p < .05). There are a few possible explanations for why
frustration might be lower for the Time-Pressure task. First, it may
be that participants saw the errors and their costs as the mechanics
of a game (trying to prevent the cat from eating the pie), rather
than as aberrant events. Second, it may be that the time-pressure
elements created a sense of rewardwhen participants avoided penal-
ties, which offset the frustration caused by errors. Finally, it may
be that the time pressure pushed participants to focus on the task,
and not engage in multi-tasking during the study (a known behav-
ior for participants on Mechanical Turk) – the lower average and
maximum block durations for the Time-Pressure task as compared
to Standard may provide some evidence for less multi-tasking in
the Time-Pressure task. The reward and multi-tasking explana-
tions could apply to the Split-Attention (low-penalty) group as well,
which also shows a trend toward lower frustration ratings.

None of the slope effects for the task variants were found to
be significant, suggesting that the magnitude with which frustra-
tion increased with added cost was about the same across the task
variants.

5.4.3 Exploratory Analysis of Additional Factors. An exploratory
analysis was conducted to investigate additional factors that may
influence preference for FP vs. FN errors. We were interested in
whether error preference can be influenced by primacy effects (how
close to the start of a block errorswere experienced), end effects (how
close to the end of a block errors were experienced), and peak effects
(clusters of an error type in a short period of time). To test this, a set
of metrics to capture these effects was developed (see Appendix).
We also wanted to test the effects of user errors (where a user either
opened a target item but failed to select it; or accidentally selected
a non-target item). A mixed-effects model was fit with weighted
error preference as the outcome variable, Reopen_Delta and the
metrics above as fixed effects, and Participant_ID as a random effect
(Table 8).

The model results indicate a significant effect for Peak_FP (i.e.,
a peak of FP errors occurring during the task is associated with a
lower preference for FP errors), and for End_Delta (i.e., the error
type experienced more frequently near the end of the block is less
preferred). These results suggest that retrospective assessments of
the experience of recognizer errors can be influenced by recency,
and that clusters of errors occurring together can stand out when
making retrospective assessments. This has implications for study
methodologies for understanding the user experience of errors,
which are discussed at the end of this paper.

5.5 Post-Study Questionnaire Results
In the post-study questionnaire, participants were asked: In general,
which type of recognizer error did you find to be more frustrating?
For the Standard task, participants’ responses were: FP=17/Equally-
Frustrating=19/FN=14, for Time-Pressure: 19/11/19, and for Split-
Attention: 14/18/11. In interpreting these responses, it is important
to remember that the temporal cost of FP errors was greater than
that of FN errors in only 4/13 (30.8%) of the conditions that each
participant experienced, so the fact that FP errors are disliked as
much as or more than FNs is further evidence of a bias against them
not explainable by temporal costs alone.

In terms of participants’ responses on what they disliked about
each error type, the prevalent themes largely mirrored those for
Study 1. However, two new themes emerged, as did some themes
related to the Time-Pressure task variant.

5.5.1 Higher Average Cost for One Error Type. One new theme,
mentioned by four participants in reference to FN errors, was that

Table 7: ANOVA for mixed-effects model (outcome variable: frustration ratings)

Predictor Estimate F-statistic p-value

Reopen_Sum 0.058 F(1, 1576.27)=6.09 <.05
Time-Pressure slope: +0.004 F(1, 1576.18)=0.02 0.899

intercept: -0.723 F(1, 220.38)=4.39 <.05
Split-Attention (low-penalty) slope: +0.056 F(1, 1576.17)=1.86 0.172

intercept: -0.770 F(1, 220.66)=3.34 0.069
Split-Attention (high-penalty) slope: -0.033 F(1, 1576.53)=0.57 0.451

intercept: +0.294 F(1, 222.34)=0.43 0.515
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Table 8: ANOVA for mixed-effects model (outcome variable: weighted preference for FP errors)

Predictor Estimate F-Statistic p-value

Reopen_Delta -0.391 F(1, 1578.2)=127.10 <.0001
User Errors (failed to select target) +0.013 F(1, 1687.3)=0.06 .810
User Errors (selected non-target) -0.026 F(1, 1649.4)=0.14 .708
Primacy_Delta +0.044 F(1, 1600.5)=0.57 .451
Peak_FP -0.113 F(1, 1610.0)=4.21 <.05
Peak_FN -0.110 F(1, 1623.4)=3.73 .054
End_Delta -0.126 F(1, 1598.4)=4.54 <.05

the tile reopening times seemed longer in general for the error type,
e.g.:

I did not like the time spent waiting for the missed
selection errors which felt to be on the longer side for
much of the trials. . . . - P296

This makes sense since there were in fact more conditions in which
FN errors had higher reopening times. Surprisingly, two partici-
pants made similar comments for FP errors.

5.5.2 Expectations from Prior Experiences. Another new theme
was to mention past experiences with a faulty mouse. Three of
four participants who raised this theme mentioned that it made FN
errors seem less severe, e.g.:

I actually had no problem with [FN] errors. I’ve had it
happen from time to time in the past due to a malfunc-
tioning mouse and I’ve gotten used to checking over my
own work and clicking twice to ensure that my selection
is counted. – P328

One final participant mentioned this as a negative:
I think [FN errors] also has a negative connotation in
my mind from an old mouse that I no longer use in
which I would click and not get a response. – P296

An additional participant, commenting on FP errors, mentioned
that these errors never occur with mice:

I hated this one. Nothing more frustrating than having
your mouse click when you don’t actually click any-
thing. I’ve never had my mouse do that before. – P265

Though these comments were rare, they suggest a need to replicate
the current study with other input modalities, to better understand
how expectations from past experiences may be influencing partic-
ipants’ assessments.

5.5.3 Task Variant Themes. In terms of themes specific to the task
variants, a theme that was raised for the Time-Pressure variant was
that FN errors were frustrating because they could occur at critical
moments – i.e., when the timer is about to run down. This theme
was mentioned in one comment on FP errors, and four comments
on FNs, e.g.:

[FN errors] often led to me losing a piece of my pie since,
by the time I found the circle, I was already low on time.
Therefore the frustration with this error was simply that
it was more obvious how much it was hurting my time
because I was already feeling the time crunch before I
got there and was in a hurry to click the circle. – P267

It is important to note that, objectively, both error types are equally
damaging in the Time-Pressure task. However, when searching
for the final target on a given page, FN errors can lead to a situ-
ation where the user almost avoids a penalty, but then receives
one because of an error. These comments indicate that the specific
circumstances of how errors occur in a task can influence the cost
of that error.

Finally, a participant in the Time-Pressure condition commented
that errors (of both types) were less frustrating because it was fun
to try to beat the timer, which may partially explain the lower
frustration ratings for Time-Pressure.

The reason why I was not frustrated or annoyed is be-
cause, it was sometimes fun, trying to beat the timer/bar,
even when it clicked when you didn’t, or didn’t when
you did. – P240

In contrast to the Time-Pressure task, no obvious novel themes
emerged in comments by Split-Attention participants.

6 DISCUSSION
In this section, the results of the two studies are compared, and
their main findings are summarized and related to existing research.
We also discuss the implications of these findings for the design of
gesture-based user interfaces, and for further studies to understand
the experience of system errors.

6.1 Differences in bias estimates for Study 1 vs.
Study 2

While both studies showed evidence for a bias against FP errors,
the bias estimate of ∼1.5s in Study 1 is greater than the ∼0.4s bias
estimate for the Standard task in Study 2, which is surprising given
that these two groups performed the same task. There are several
potential explanations for this. First, the set of cost regimens tested
in Study 2 meant that participants experienced more conditions
where CFP was less than CFN, which may have led to a global
decrease in negative sentiment against FP errors as compared to
Study 1, where the differences in cost were balanced across the
full set of cost regimens tested. Second, the set of cost regimens
tested in Study 2 may have artificially reduced the apparent bias
against FPs by gathering fewer “anchor” data points for conditions
with CFP > CFN . Future studies could address this by testing a wider
range of cost differences. Finally, Study 2 used a coarser resolution
in the set of costs that was tested (0.75s increments rather than
0.5s as in Study 1), which could have made the study less sensitive



False Positives vs. False Negatives UIST ’21, October 10–14, 2021, Virtual Event, USA

to detect a bias. Investigating these possibilities is an important
area for future work to replicate the present results, and to develop
robust and reusable methodologies for measuring biases in error-
type preference.

6.2 What drives error-type preference?
Through controlling the recovery actions associated with FP and
FN errors, we have demonstrated that temporal costs can drive both
error type preference and the frustration associated with each of
these error types. The study results also demonstrate a bias against
FP errors not explained by temporal costs alone, and evidence for
several potential causes of this bias.

A primary driver of the bias against FP errors appears to be the
added cognitive cost of noticing when FP errors have occurred, as
evidenced by the greater bias in the Split-Attention (low-penalty)
group and post-study comments. Comments suggest that these
errors were more surprising, and that they demanded the user’s
attention to notice their occurrence. Moreover, once noticed, the
errors had to be corrected. Here, the user must switch their primary
task goal from finding target items to undoing an erroneous selec-
tion of a non-target. This type of goal-set switching is known to
impose cognitive costs, particularly if one does not expect the onset
of the new task [14] and/or if it requires one to retrieve from long-
termmemory [13] (e.g., to remember the location of the most recent
selection). A task-switching cost is consistent with Quinn’s work on
negativity biases in interactions, which showed that error recovery
actions that feel like backtracking can lead to a more negative view
of an assistive technique, recovery time being controlled for [17].
A final potential driver of the bias against FP errors is the lack of
feedback associated with FN errors, which may lead to ambiguity
about whether the error was the fault of the system or the user. The
importance of feedback for error recovery is well-established [25],
but more work is required to understand how ambiguity about the
attribution of errors (by users to themselves vs. to the system) might
affect relative error preferences and perception of input techniques.

In addition to the finding that the Split-Attention task may ex-
acerbate the bias against FP errors, participants’ lower frustration
ratings and post-study comments on the Time-Pressure task sug-
gest that task context can influence the experience of errors in both
global ways (such as the Time-Pressure task exhibiting lower frus-
tration, potentially because it prevented multi-tasking or because
errors were seen as part of a game) and in more granular ways
(such as where a user narrowly misses beating the timer because
of an FN error).

The exploratory analysis of Study 2 data also provides evidence
that retrospective assessments of error-type preference can be influ-
enced by peak and end effects. This is consistent with Katsuragawa
et al.’s finding that multiple recognizer errors occurring in succes-
sion are particularly damaging to user experience [10], and adds
to existing research demonstrating that peak and end effects can
influence retrospective assessments of interactive systems [4, 6].

6.3 Implications for design and further
research

The findings in this paper have several implications for the design
of recognition-based input systems. First, understanding the factors

that drive error cost lays the groundwork for error-cost aware
input recognizers, which dynamically assess the relative costs of
FP versus FN errors, and adapt the recognizer threshold accord-
ingly. A challenge in implementing such a dynamic thresholding
approach is how to integrate in cognitive costs and biases (which
are not observable) with observable costs (such as the temporal cost
studied here, or other observable costs such as number of input
actions). The studies reported here enable such an integration of
cognitive costs by estimating those costs in terms of an observable
cost. For example, the finding that users exhibit a bias against FP
errors equivalent to ∼1.5 seconds could be directly integrated into
a dynamic approach to adjusting a recognizer threshold.

Second, to address the challenge that false positive errors do
not occur in response to a user action, and thus require the user to
monitor for their occurrence, an input system could help the user
with noticing these errors. General techniques have been proposed
to draw the user’s attention to changes in an interface [2], as have
techniques for notifying the user of changes in wide display spaces
[3]. In the case of FP errors, there may be an opportunity to dynam-
ically assist users with noticing errors, e.g. when scores are close
to the recognizer threshold.

Finally, the studies reported here have implications for further
research into the effects of errors on user experience. The finding
that frustration caused by temporal cost of errors was lessened
in the Time-Pressure task suggests that gamifying a study task to
understand errors can result in an unrealistic picture of the effects
of errors. The peak/end effects suggest that it may be valuable to
control for these effects in studies of error cost. It also suggests
value in developing means for measuring the effects of errors in
real-time, to avoid relying on retrospective evaluations. Finally, the
tile-opening task developed for this study provides a means for
independently controlling the rate and temporal cost of FP and FN
errors, and we hope it can be adapted for further research in this
area.

6.4 Generalizability and limitations
An important open question is how the results reported here will
generalize beyond mouse input and the specific study task that was
tested. If we consider another input modality, such as mid-air ges-
tures for AR/VR, we could imagine there being greater attentional
demands to notice when FP errors have occurred, or to identify the
effects of these errors, which may be outside the user’s field of view.
Given that our study results suggest that attentional demands are
a driver of bias against FP errors, this may translate into a greater
bias against FP errors, though more investigation is needed to test
this hypothesis. Gesture-based input may also introduce additional
costs that are not present for the mouse, such as the effort to pre-
pare to perform a gesture (e.g., by moving the hand into a position
where it can be sensed), and the effort to perform the gesture itself.
Such additional costs could influence the ease with which users
recover after FP and FN errors, and thus error-type preference, so it
will be important to identify such additional costs and understand
their effects.

Another important open question is how expectations and prior
experience with an input modality influence error-type preference.
Given that mouse input is highly reliable and familiar to users, it
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is possible that users’ prior experiences may have influenced their
experience of errors. If these effects are not symmetric across FP and
FN errors (e.g., because FN errors with a mouse are more believable
than FP errors), it could explain some of the bias against FP errors
that we observed. However, the comparison of the Split-Attention
(low-penalty) vs. Standard groups in Study 2 should have controlled
for any such effects, and suggests that greater attentional demands
increase bias against FP errors.

The question of generalizability to other tasks and error-rate
regimens is important as well. The study task used in this work
may have made the temporal cost of errors more salient because
it was the only factor varying across blocks. As well, the tile re-
opening visual draws attention to reopening time, and participants
experienced many errors in a short time, enabling them to rapidly
learn the temporal costs. Understanding how the temporal cost of
errors influences error type preference in a broader range of tasks
and situations is an interesting area for future work.

7 CONCLUSION
This paper has contributed new findings on how relative preference
for false positive versus false negative errors is influenced by the
temporal and cognitive costs associated with these errors. This is a
first step toward more comprehensive models and understandings
of the costs of input errors on user experience, and a vision of error-
cost aware gesture recognition techniques that can dynamically
adjust their behavior to prevent errors when they would be most
costly, and create a more optimal user experience.
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A APPENDIX – FEATURES FOR EXPLORATORY ANALYSIS

Table 9: Features used in the exploratory data analysis reported in Section 5.4.3.

Feature Description

User Errors (failed to select target) Count of instances in the block where the user opened a tile to reveal a target item but did
not click to select it before the tile closed.

User Errors (selected non-target) Count of instances in the block where the user opened a tile to reveal a non-target item and
then mistakenly selected it.

Primacy_FP Sum of the timestamps of FP errors in the block (i.e., time since the start of the block), with
an exponential weighting function f(t)=10*e(-t/30000) applied to each.

Primacy_FN Sum of the timestamps of FN errors in the block (i.e., time since the start of the block), with
an exponential weighting function f(t)=10*e(-t/30000) applied to each.

Primacy_Delta Primacy_FP – Primacy_FN
Peak_FP A gaussian kernel density estimate (bandwidth=5000) was fit to the timestamps of FP errors

in the block. Metric is the sum of density estimates at each timestamp.
Peak_FN A gaussian kernel density estimate (bandwidth=5000) was fit to the timestamps of FN

errors in the block. Metric is the sum of density estimates at each timestamp.
End_FP Sum of the deltas between timestamps of FP errors and the end of the block, with an

exponential weighting function f(t)=10*e(-t/30000) applied to each.
End_FN Sum of the deltas between timestamps of FN errors and the end of the block, with an

exponential weighting function f(t)=10*e(-t/30000) applied to each.
End_Delta End_FP – End_FN
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