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Figure 1: An overview of the error detection model. A deep learning model was trained on three distinct VR tasks (top) using 
users’ natural gaze dynamics (bottom left) to classify input events into three classes in the moments after they occur: inten-
tional actions, input recognition errors, and user errors. A confusion matrix for the model trained and tested on data from all 
three tasks showed above-chance (0.33) performance for the three classes (bottom right). Such error type information could 
be used by future interaction systems to refne their model for better personalization or assist the user with error recovery, 
resulting in low friction interactions. 

ABSTRACT 
Gesture-based recognition systems are susceptible to input recog-
nition errors and user errors, both of which negatively afect user 
experiences and can be frustrating to correct. Prior work has sug-
gested that user gaze patterns following an input event could be 
used to detect input recognition errors and subsequently improve 
interaction. However, to be useful, error detection systems would 
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need to detect various types of high-cost errors. Furthermore, to 
build a reliable detection model for errors, gaze behaviour following 
these errors must be manifested consistently across diferent tasks. 
Using data analysis and machine learning models, this research 
examined gaze dynamics following input events in virtual reality 
(VR). Across three distinct point-and-select tasks, we found difer-
ences in user gaze patterns following three input events: correctly 
recognized input actions, input recognition errors, and user errors. 
These diferences were consistent across tasks, selection versus 
deselection actions, and naturally occurring versus experimentally 
injected input recognition errors. A multi-class deep neural net-
work successfully discriminated between these three input events 
using only gaze dynamics, achieving an AUC-ROC-OVR score of 
0.78. Together, these results demonstrate the utility of gaze in de-
tecting interaction errors and have implications for the design of 
intelligent systems that can assist with adaptive error recovery. 
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1 INTRODUCTION 
With the growing adoption of head-mounted augmented reality 
(AR) and virtual reality (VR) technologies, there is an increasing 
interest in AR and VR input technologies that eliminate the need 
for handheld input controllers and enable more natural interactions 
with digital content, such as mid-air, hand-based gesture input. To 
achieve this, however, a system must deploy input recognizers that 
distinguish intentional user input to a system (e.g., a mid-air selec-
tion gesture) from other user behavior that is directed at the real 
world and not intended for interaction with a system (e.g., pointing 
someone in the direction of the local cofee shop). Prior approaches 
to solve this problem have deployed mode switching [35, 64, 71], 
but these techniques require time, memory, and efort from users. 
To enable low friction, intuitive interaction with AR/VR systems, 
gesture recognizers need to be highly accurate and activate without 
any required efort from users, and they must discriminate inten-
tional system-directed gestures from other world-directed actions. 
However, even with the rapid development of accurate and usable 
gesture recognizers and recognition techniques in recent years, 
input recognition errors are still difcult to completely eliminate 
and continue to signifcantly degrade user experiences [41]. 

Input recognizer errors are not the only errors that degrade user 
experiences. Users themselves can also produce errors. A user error 
occurs (1) when a user makes a selection that an input recognizer 
correctly detects, but the selected object was task-irrelevant, lead-
ing to an unexpected or a negative outcome, or (2) when a user 
rapidly changes their mind about their selection [42]. These errors 
are frustrating and costly to users [42] – especially if they cannot 
be reversed – but they cannot be eliminated by improving an input 
recognizer because the system correctly recognized the gesture 
produced by the user. Common approaches to reducing user er-
rors include interaction techniques that prevent errors [31, 68] and 
techniques that assist users in recovering from errors [2, 5, 44, 56]. 
Although these methods substantially improve one’s interaction 
experience, they are not a universal solution and must be designed 
anew for each application and user interface. Given the prevalence 
[8, 9, 24, 66] and costly [41] nature of input recognizer and user 
errors, and the lack of a universal solution for handling errors, it 
would be valuable for systems to be able to detect whether a recent 
input event was an input recognition error or user error and use 
this information to adapt its models and/or support interaction in 

an error-type specifc manner. For example, if a system could detect 
erroneously recognized input events, it could use those instances to 
refne and personalize its recognizer models. Similarly, if a system 
could detect input recognition errors and user errors, it could pro-
vide adaptive error recovery techniques to assist users with error 
correction. Although the detection of probable errors for model 
improvement and mediation is compelling and could transform 
input experiences, such systems are not currently prevalent. 

To pave the way for such solutions, one must frst demonstrate 
the feasibility of detecting recent input recognition errors and user 
errors. Prior work by Peacock et al. introduced the use of a gaze-
based classifcation model to detect false positive input recognition 
errors and user-intended true positive input events [52]. However, 
in that study, errors were artifcially injected by a study system and 
the model was developed using data from one highly controlled 
task. The present work seeks to generalize this result to other error 
types and input events that occur in point-and-select tasks, and test 
two hypotheses: 

• H1: Input Event Discrimination: Distinct types of input events 
and errors will provoke diferent temporal patterns of gaze 
dynamics, enabling gaze to be used to discriminate between 
these events. 

• H2: Cross-Task Consistency: The temporal patterns of gaze 
dynamics following a given type of input event will manifest 
consistently across diferent scenarios and tasks. 

The present work seeks to confrm these hypotheses, to enable 
the creation of machine learning models that can reliably discrim-
inate between diferent types of input events and errors across 
diferent scenarios and tasks, which in turn could be used to deploy 
appropriate interventions as needed. To this end, the paper makes 
the following contributions: 

• An analysis of three independent point-and-select datasets 
which demonstrated that 1) a gaze-based system could dis-
criminate diferent types of input events after their occur-
rence (i.e., intentional actions, input recognition errors, and 
user errors) and 2) temporal patterns of gaze features con-
sistently manifested themselves after the three input events 
across three tasks. 

• A multi-class deep learning model that took users’ natural 
gaze dynamics following an input event as input and clas-
sifed an event as an intentional action, input recognition 
error, or user error, with an AUC-ROC-OVR of 0.78 across 
three tasks. 

Together, these fndings demonstrate the potential of using gaze 
dynamics to identify diferent types of input events and have im-
plications for the design of future intelligent, error-aware systems 
that can detect when input recognition errors and user errors have 
occurred. Such systems could use such information to improve 
recognition models or take corrective actions to help users recover 
from errors. 

2 RELATED WORK 
The present work builds on prior research on input errors, input 
recognition techniques, and the use of gaze to improve input recog-
nition. 

https://doi.org/10.1145/3526113.3545628
https://doi.org/10.1145/3526113.3545628


Detecting Input Recognition Errors and User Errors using Gaze Dynamics in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

2.1 Input Errors 
Broadly speaking, input errors can be classifed into two categories, 
user errors and input recognition errors. User errors occur when 
the user provides input to a system that does not advance their 
current objective, such as clicking the wrong button in an interface. 
In contrast, input recognition errors occur when a system misinter-
prets (i) whether a user is intending to provide input to a system or 
not or (ii) the specifcs of the input that the user is attempting to 
provide. 

Two main types of system errors can occur in gesture-based 
input, i.e., false negatives and false positives. False negatives occur 
when a system fails to recognize intentional input provided by 
a user, resulting in no input to the system. False positives occur 
when a system mistakes non-input behavior for intentional input, 
resulting in unintended input to the system. Both error types have 
the potential to degrade user experiences, but false positive errors 
have been shown to be particularly costly for user experiences, in 
part because they occur unexpectedly and impose an attentional 
cost to notice and fx [41]. The present work is focused on building 
models to detect and distinguish false-positive system errors from 
user errors and intentional input. We do not address the problem of 
false negative errors, for which heuristic detection methods have 
been developed in prior work [36, 49]. 

Prior work has also shown that user errors can be caused by 
momentary cognitive defcits such as increased cognitive load, a 
lack of attention, defcits in working memory, or interruptions 
[1, 7, 13, 14, 54, 55]. User errors can also result from momentary 
motor function defcits such as overshooting or undershooting a 
target [25, 26]. These errors are much more difcult to recognize 
and reduce because they are driven by failures in a user’s behavior 
and cognition, rather than failures in a system’s models. To date, 
the primarily mechanism for addressing user errors has been to 
design interfaces such that actions are easily reversible, for example 
through undo or history mechanisms [2]. The present work explores 
a new approach to address user errors by determining whether they 
can be detected using gaze behavior following their occurrence. 

2.2 Improving Input Recognition 
Input recognition errors have been shown to have negative efects 
on user experiences [41, 49]. The most common approach to address 
these errors is to improve the accuracy of sensing systems or en-
hance the gesture recognition techniques that are used to recognize 
input based on sensor data [48, 58, 59]. Typically, the recognition 
method used for a given input technique is fxed, but some work 
has explored dynamically adjusting a recognizer to create a more 
optimal user experience. With bi-level thresholding, for example, a 
system imposes a conservative threshold for recognition to reduce 
false positive errors but relaxes this threshold following false nega-
tives to allow the user to succeed when trying to perform a gesture 
a second time [36, 49]. Although bi-level thresholding can help 
reduce false positives, it can lead to more false negatives, which 
may not be appropriate for some applications, such as fast-paced 
games in VR. 

In addition to refning input recognition for a given modality, 
prior work has explored combining multiple modalities to obtain 
a more accurate idea of a user’s intentions. Researchers have, for 

example, combined gaze with hand motion to support object ma-
nipulation in VR [75], combined gaze with key presses to control 
scrolling [40], and combined gaze with gestural input to reduce lo-
cation errors while pointing at objects in VR [73]. These approaches 
use additional sensing modalities prior to selection to improve input 
detection. 

While many promising approaches have been developed to re-
duce recognizer errors, it is unlikely that they can be eliminated 
completely. An alternative approach has been to design systems 
that are aware of when they have made recognition errors, so that 
the system might assist a user in recovering from such errors [62]. 
In this vein, recent work by Peacock et al. showed that gaze dynam-
ics could be used to diferentiate user initiated input actions from 
input recognition errors (simulated by injecting clicks) as early 
as 50 milliseconds after their occurrence, with accuracy peaking 
at 550 milliseconds [52]. While these were encouraging initial re-
sults, Peacock et al.’s study had several limitations. First, they only 
studied one task, leaving open the question of task generalizability. 
Second, false positive input errors were simulated using injected 
button clicks, leaving it unclear whether their results would gener-
alize to the false positive errors that naturally occur with gesture 
recognizers. Third, they only studied one type of error, i.e., input 
recognition errors (using a two class model) and therefore, it is 
unclear if gaze can be used to detect other types of errors such 
as user errors. The present work addresses these open questions, 
establishing that gaze-based input recognition error detection is 
generalizable across the task used by Peacock et al. and for two 
new tasks, including one in which false positive errors naturally 
occurred in a pinch-based gesture recognition system. 

2.3 The Utility of Gaze in Detecting User 
Interaction 

Natural gaze behavior has been shown to refect internal cognitive 
and motor states [17, 23, 28, 51] and to be sensitive to reward. For 
example, the saccade vigor (i.e., peak velocity as a function of am-
plitude), is greater if the stimulus toward which an eye movement 
is being made is associated with a reward [57, 60]. Gaze behavior 
has also been found to have distinct patterns for goal-oriented and 
non-goal oriented behavior [63]. As an example, gaze is known to 
be tightly linked to manual selection (e.g., pointing) [10, 16, 27]. 
That is, prior research has shown that hand movements are tightly 
linked with eye movements [3, 47]. In particular, eye movements 
precede hand movements by a few milliseconds [20, 21, 67] and 
thus patterns of eye gaze behavior are a good predictor of future 
hand motion [74]. 

Furthermore, people have been found to fxate for longer on 
incongruent objects (e.g., an octopus in a farm scene) than congru-
ent objects in an environment (e.g., a scarecrow in a farm scene), 
implying that there are diferences in gaze behavior that depend on 
environmental inconsistencies [29, 38, 43]. Related to this, gaze be-
havior has also been shown to refect expectation violations [19, 50]. 
Given that gaze is an indicator of overt attention [11], where gaze 
locations are consistent with one’s location of attention, gaze also 
can be used to index object saliency [33] during feature attention 
[12]. Together, this prior work has demonstrated that gaze is typi-
cally coupled with attention and that it is sensitive to surprising and 
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Figure 2: A map of an input event. (A) A 2x2 space of input 
events that occur when an input event is detected by a rec-
ognizer. The event space has two axes: input recognition ac-
curacy and task accuracy. (B) Unpacking of the general in-
put event space described in (A), adapted to the tasks in this 
study. First, input events were classifed based on whether 
the system recognized the user’s intended action (left panel) 
or if the system recognized an action that was not performed 
by the user (right panel). Actions were classifed based on 
whether that action was a selection or a deselection (i.e., 
undo), and whether the object was a target, non-target, or 
a neutral space. 

unexpected events in the environment. As such, gaze is a promis-
ing signal for the detection of recent errors, both from the input 
recognizer and the user themselves. 

Recent studies have also looked into other forms of implicit 
gaze interactions. For example, changes in a user’s gaze patterns 
can indicate the onset of cybersickness [72]. User gaze patterns 
can also be used to efciently manage visual content, overload, 
and clutter [22, 65] which is increasingly becoming an important 
aspect of AR. There has also been an increased interest in gaze 
guidance in XR environments [39, 46]. Furthermore, combined with 
information from the surrounding facial muscles and pupillometry, 
gaze information could be used to create an empathic connection 
between remote collaborators [45] 

In summary, the reviewed literature suggests that gaze dynamics 
might be useful when distinguishing between diferent types of 
input events. However, the closest related work, i.e., Peacock et al. 
[52], only looked at distinguishing injected clicks from intentional 
clicks for a particular task. The present work explores the use of 
gaze behavior to distinguish input events in greater depth, exam-
ining three classes of input events (i.e., intentional actions, input 
recognition errors, and user errors) across three distinct tasks. 

3 DATA ANALYSIS AND MODELING 

3.1 Input event space 
This study aimed to identify and analyze gaze dynamics patterns for 
intentional actions and diferent types of errors that occur during 
VR-based point-and-select interaction. These input events can be 
conceptualized and represented as a 2x2 space with input recog-
nition accuracy and task accuracy as the two axes, leading to 4 
possible outcomes of a detected input event: (Fig. 2). 

• Intentional actions, where a user performs intentional cor-
rect actions and a system recognizes these actions correctly, 
leading to a positive outcome. 

• Incidental actions, where a user did not provide an intentional 
input but a system falsely recognized an action, leading to 
a positive outcome (e.g., a system selected a task-relevant 
object but the user did not initiate this action). 

• User errors, where a user performed intentionally wrong 
actions (e.g., by clicking on a task-irrelevant object) which 
a system recognized correctly, thus leading to a negative 
outcome. 

• Input recognition errors, where a user did not provide an 
intentional input but a system falsely recognized an action, 
leading to a negative outcome (e.g., a system selected a task-
irrelevant object but the user did not initiate this action). 

This framework can be further unpacked to apply to the datasets 
considered in this research (as described in the next section) by 
transforming the input recognition and task accuracy axes into 
object space and action space axes (Fig. 2B). At the level of the 
object space, the object that was selected or deselected could be 
a target, a non-target, or a selection in an empty space that did 
not have any object at all (i.e., "neutral"). When considering those 
objects that a user can interact with, a user’s action could be to 
select an object or to deselect an already selected object (to undo a 
prior selection). Although unpacking this framework is specifc to 
the tasks considered in this paper, it is extensible to other object 
and actions spaces as well. For example, in other situations, the 
action space could have two diferent actions, such as left versus 
right click, or even n diferent actions. 

3.2 Datasets 
Three datasets with diferent types of input systems (i.e., a hand-
held controller with clicks vs a pinch gesture recognizer), varying 
levels of experimental constraints, and task demands were used for 
the data analysis to test the two hypotheses. These datasets were 
composed of eye-tracking data in VR from point-and-selection 
tasks and contained input recognition errors and user errors. These 
datasets were previously generated from three prior and indepen-
dent studies and were used here with permission from the authors 
of those studies. 

Our aim was to test the two hypotheses (i.e., input event discrim-
ination and cross-task consistency) for gaze dynamics while inten-
tional actions, user errors, and naturally occurring false positive-
input recognition errors occurred during mid-air gesture based 
interactions using a realistic interaction task. However, instead of 
studying a less constrained system with a gesture recognizer, we 
frst studied the gaze dynamics during a simplifed, well-controlled 
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Figure 3: Datasets and the distribution of input events per 
dataset. (A) Left: Screenshot of the Tile Search task. The 
mode of input is represented using an icon to the left (in 
this case, a hand-held controller); Right: The distribution of 
events (as mapped in Fig. 3A) for the Tile Search task. TP 
refers to true positives, which occur when the input recog-
nition is correct, and FP refer to false positives, which occur 
when the input recognition is incorrect. See Fig. 2B. (B) Left: 
Screenshot of the Room Search task; Right: The distribution 
of events for the Room Search task. (C) Left: Screenshot of 
the Dice Game task. The mode of input is represented using 
an icon to the left (in this case, a hand gesture); Right: The 
distribution of events for the Dice Game task. 

task (Tile Search Task) where the input recognition errors were 
experimentally injected. These results were then compared to those 
from a less constrained task that had experimentally-injected input 
recognition errors (Room Search Task). Finally, the investigation 
was expanded to a more realistic task (i.e, Dice Game Task) using 
mid-air gestures, where input recognition errors occurred naturally. 

3.2.1 Tile Search Task. The Tile Search task (Fig. 3A) required 
participants to uncover and select target objects in a grid, using a 
ray-cast pointer from an HTC VIVE controller. On each “page”, a 3 x 
3 grid of tiles was displayed. Six of the tiles were randomly selected 
and colored yellow, whereas the other three were grayed out and 
could not be interacted with. Participants searched through the six 
yellow tiles for a specifed number of target objects (e.g., “Select 
[2] × [green circles]”). To reveal the contents of a tile, participants 
dwelled a ray cursor on the tile for 1.25 seconds while a circular 
progress indicator flled. The tile then fipped to reveal one of six 
icons: a green circle, a red heart, an orange triangle, a yellow star, 
a blue moon, or a purple plus sign. If the icon matched the target 
(e.g., a green circle), the participant would need to try to select the 

tile by briefy breaking and then re-engaging contact between their 
thumb and the controller’s touch pad. If the tile was not selected 
within 1 second, the tile fipped back over automatically to hide the 
object. If selected, click feedback was provided (described below) 
and the tile would close (i.e., fip back over) 0.5 seconds after the 
click. Once the specifed number of target objects was selected, a 
new page of objects was displayed. 

When the participant fipped open a tile to reveal a non-target 
icon, the system occasionally injected a click at a randomly selected 
time between 0.2 seconds and 0.5 seconds after the tile was opened, 
or at the moment when the participant’s ray-cast pointer exited 
the boundaries of the tile, whichever occurred frst. When an error 
was injected, the system would act as though the user had per-
formed a click, selecting the tile with the non-target object and 
providing identical feedback to a user-initiated click. To deselect an 
erroneously selected object, the participant needed to frst re-open 
the tile and then click to deselect it. To ensure that the error was 
corrected before moving on, the participant was prevented from 
opening any other tiles until the non-target object was deselected. 

The dataset contained interaction and eye-tracking data for 31 
participants who completed this task as part of Peacock et al.’s 
investigation of gaze behavior as an indicator of input recognition 
errors [52]. Among them, 12 identifed themselves as female and 
19 identifed themselves as male. The mean age of all participants 
was 35 years. For each participant, there was data for 12 “blocks” 
of the task described above, each consisting of 60 tile openings 
over several pages. Each block contained 9 injected clicks (i.e., 9/60 
tiles; 15% error rate per tile opening). 

This task was composed of the three types of input events we 
set out to investigate: correct intentional actions, input recogni-
tion errors, and user errors. Therefore, we used this dataset to test 
H1 (Input Event Discrimination). That is, we explored if the gaze 
dynamics had diferent temporal patterns after diferent types of 
input events. 

3.2.2 Room Search Task. The Room Search task required partici-
pants to search through a multi-room virtual environment to fnd 
and select 25 objects of a specifc target color (i.e., green, yellow, 
or red), while not selecting objects of non-target colors. Selectable 
objects included 3D objects in the rooms (e.g., furniture, lamps), 
and rectangular tiles of various sizes covering the walls, foor, and 
ceilings. An HTC VIVE controller was held in the participant’s 
dominant hand and objects were selected using a ray-cast pointer 
controlled by hovering the ray cursor over the object and clicking 
using a button on the controller. Participants could also navigate 
through the environment using a standard VR teleportation tech-
nique that was invoked using a second HTC VIVE controller that 
was held in the participant’s non-dominant hand. 

The inclusion of tiles on the walls, foor, and ceiling of the en-
vironment created a situation where the ray cursor was nearly 
always hovering over a selectable object. On a random schedule, 
the system would inject false positive clicks, which would select 
or deselect the currently hovered object. The schedule for click 
injections was generated at the start of the trial, such that 20 clicks 
would be injected over 5 minutes. Injected clicks acted identically to 
user-initiated clicks, toggling the selection state of the object being 
hovered over and providing identical feedback to user-initiated 
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clicks. Unlike the Tile Search task, participants were not required 
to correct erroneous selections of non-target objects immediately, 
though they were not able to fnish a block while non-target objects 
were selected. 

The dataset contained interaction and eye-tracking data for 19 
participants (i.e., 8 of them identifed as female, 9 as male, 1 as 
non-binary, and 1 preferred not to disclose their gender). The mean 
age of all participants was 37 years. Each participant completed 6 
blocks of the task. 

3.2.3 Dice Game Task. Diferent from the Tile Search and Room 
Search tasks, the dataset for the Dice Game task consisted of input 
events triggered by a hand gesture recognizer through an IMU-
based, wristwatch-driven pinch sensing system similar to Wen et al. 
[69]. Here, false positive input recognition errors were caused due 
to the imperfect recognition instead of experimental injections. The 
participant wore a ring-styled device on the thumb and the index 
fnger similar to ElectroRing [37] to collect the ground truth for 
pinch selections. And they also wore an HTC Vive Pro Eye HMD 
with a hand tracker puck [32] whose raycast pointer was used for 
pointing. 

This Dice Game task was a VR version of a Yahtzee-style dice 
game [70]. The goal was to gain more points than the computer 
opponent within a 3-min timed block. There are 12 blocks in total 
and the participant and the computer took turns within each block. 

Depending the speed of the participant, the number of turns in 
one block varied. The participant started the game by clicking on 
the "roll dice" button. In front of the participant, there was a panel 
displaying the points that they could collect if their dice were rolled 
into that combination. After the dice were rolled, the participants 
could "lock"/"unlock" any dice by clicking on it to aggregate it 
towards the desired combination. They could click on the "roll dice" 
button 3 times maximum in a turn. Once the combination was 
achieved, the participant could click on that combination shown in 
the panel in front of them to collect the points. 

This dataset contained interaction and eye-tracking data for 18 
participants who completed this task as part of investigation of 
hand movement behavior as an indicator of intent to interact in [76]. 
Each session had around 60 minutes of data for each individual. The 
mean age of all participants was 34 years. Seven of them identifed 
themselves as female and 11 identifed themselves as male. 

3.3 Pre-processing and Feature Extraction 
A common, reusable data pre-processing pipeline was designed 
and applied across all three datasets (Fig. 4). As such, the extracted 
features were consistent and comparable across datasets. 

First, the raw 3D gaze position vectors were transformed from 
the eye-in-head frame of reference to an eye-in-world direction 
using head orientation data [15]. The data was then re-sampled 
to 60 Hz to circumvent irregular gaze data sampling and to keep 
the sample rate consistent across participants and datasets. Next, 
gaze velocity was computed as the angular displacement between 
consecutive gaze samples divided by the change in time between 
gaze samples. All gaze samples where the gaze velocity exceeded 
800◦/s were removed because they represented very fast eye move-
ments that were unfeasible [18]. Any missing values were then 
linearly interpolated. Next, saccades and fxations were detected. 
Saccades were detected by performing IN-VT on the fltered gaze 
velocities by identifying consecutive samples that exceeded 70◦ 

[61]. A minimum duration of 17 milliseconds and maximum du-
ration of 200 milliseconds were used for saccades. Fixations were 
detected by performing I-DT, which computed the dispersion over 
time windows as the largest angular displacement from the cen-
troid of the gaze samples [61]. Time windows where dispersion did 
not exceed 1◦ were labelled as fxations. A minimum duration of 
50 milliseconds and maximum duration of 1500 milliseconds were 
used for fxations. 

After detecting the saccades and fxations, 10 features [16] were 
extracted from the data based on their predominance in past re-
search and the literature [52]. Fixation features included fxation 
probability, the fxation duration, and the angular displacement be-
tween consecutive fxation centroids. Saccade features included the 
saccade probability, the angular displacement between the current 
and previous saccade centroids, the saccade amplitude, the saccade 
duration, and the angular displacement between the current and 
previous saccade landing points. Gaze velocity and gaze dispersion 
were also included. To represent these features as a continuous 
time-series, the value for each sample point was set as the value 
of the feature from the most recent saccade or fxation event, and 
carried forward in time until the event was next detected. Empty 
values were linearly interpolated between events. Next, concurrent 
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behavioral data including information on the trial, task conditions, 
etc., were used to label the feature time series with the type of input 
events. Finally, all of the features were z-scored within-participant, 
except for the fxation probability and saccade probability, which 
were used for further analyses. 

3.4 Statistical Analysis 
One of the aims of the present work was to examine if gaze dynam-
ics after the onset of intentional input, input recognition errors, 
and user errors had diferent temporal patterns. To compare the 
time series data across these classes, an appropriate statistical test 
was performed on the time series data, for each time point (i.e., 
t-test to compare two time series or an ANOVA to compare three 
time series). This resulted in 37 statistical tests for each gaze feature 
(i.e., 600 milliseconds with 60 Hz rate). Multiple comparisons were 
corrected for using the false discovery rate (FDR) method. If the 
corrected p-value was less than 0.05, that time-bin was labelled as 
"signifcant". 

3.5 Modeling Approach 
We wanted to develop a gaze-based machine learning classifer to 
classify input events into three classes (i.e., intentional actions, input 
recognition errors, and user errors) by capturing patterns of gaze 
behavior over time rather than just single time point diferences. 
Therefore, we treated this problem as a time-series classifcation 
problem to discriminate between the three classes. 

Thus, a temporal convolutional network (TCN) was used to clas-
sify these three input events. TCN is a member of the convolutional 
neural network (CNN) family, which contains convolutional ker-
nels. These kernels have been proven to be efective in learning 
discriminating features [6], which are crucial for a classifcation 
problem, in contrast to a recurrent neural network (RNN) architec-
ture which is more often used to predict a value in a time series 
[34]. As a complex architecture could lead to overftting when a 
sample size is not large enough, TCN employs dilated convolution 
layers, which enables it to learn longer sequential patterns while 
maintaining a simple network structure [6]. Therefore it has sig-
nifcant advantages compared to other more complex CNN-based 
time series classifcation models, such as fully convolutional neural 
networks (FCNs) or ResNets that lack this feature. 

Specifcally, this research used the TCN model architecture de-
fned by Bai et al. [6], which contained 4 dilated convolutional 
layers. Because convolutional kernels are able to learn discrimi-
nating features from raw data, the frst order diference of the x, 
y, z head-corrected eye position data was used as input, instead of 
the gaze features. The time window 0 - 650 milliseconds after an 
event’s onset was extracted from the original time series as the in-
put sample. The output was one of three classes: intentional action, 
user error, or input recognition error. 

Two types of modeling approaches were used. First, a model was 
trained on 70% of the data and tested on the remaining 30% of the 
data for each individual participant, which allowed the models to 
represent individual diferences in gaze features. However, this ap-
proach led to models trained on data from all participants, and thus 
these models were not participant-independent. Second, we trained 
a separate set of models in a participant-independent manner. Here, 

the models were trained on 70% of the participants’ data and tested 
on 30% of the participants’ data, where the data of a participant 
belonged to either the training or the testing set, but not both. 

As the number of samples for each class were highly imbalanced 
(Fig. 3), the class weights for both types of models were balanced by 
setting the weights to be inversely proportional to the number of 
samples for each class. Five-fold cross validation was also performed 
on the training data (on both sets of models) to minimize the chance 
of overftting to a particular block of data. 

3.6 Evaluation Metrics 
Confusion matrices were used to ensure balanced performance 
across the classes. The Area Under the Curve (AUC) of the Receiver 
Operator Characteristic (ROC) curve for one-vs-rest (AUC-ROC-
OVR) was used to quantify model performance. Given that this 
was a 3-class classifcation problem, AUC-ROC-OVR evaluated 3 
binary class classifcations (i.e., one-vs-rest). Specifcally, 3 AUC-
ROC curves were constructed, one for each class. These curves 
were compared against the other two classes and then averaged 
into a single score. AUC-ROC-OVR has the additional beneft of 
being computationally more efcient than AUC-ROC-OVO, which 
constructs a diferent AUC-ROC curve for every possible binary 
combination of the three classes and then averages all of them. The 
AUC-ROC-OVR scores ranged from 0 and 1, with larger values 
indicating better model performance. The baseline was 0.5, which 
represented the chance level performance of a no-skill classifer. 

4 RESULTS 
In the present work, we explored whether users’ gaze dynamics 1) 
could be used to discriminate intentional actions, input recognition 
errors, and user errors moments after they occurred and 2) if they 
are consistent across diferent point-and-select tasks, action types, 
and across injected and real input recognition errors. This would 
enable us to build a machine learning model to classify these input 
events based on gaze dynamics alone. 

4.1 Gaze Features had Diferent Temporal 
Dynamics After Diferent Input Events 

To date, gaze patterns following input recognizer false positive 
errors and user errors have not been systematically explored. As 
such, we tested H1 by exploring whether gaze dynamics following 
an input event difered for input recognition errors versus user 
errors. For this analysis, the data from the Tile Search task was 
used because the input recognition errors were experimentally 
injected at random times on non-target objects only, meaning this 
was a well-constrained task suitable for this analysis. 

First, the average of each feature value aligned to the input event 
onset was computed for each time point after the onset of the input 
event for each participant. A one-way ANOVA was then performed 
to determine which time points were statistically diferent for each 
feature. Multiple comparisons were corrected for using the FDR 
method. Signifcant diferences (p < 0.05 from ANOVA after FDR 
correction) were found for all features for the three input events 
(Fig. 5). We also performed post-hoc Tukey HSD tests on each time 
point for pairs of conditions (see Fig. A1 for example). Together, 
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Figure 5: Visualizations of the time series of z-scored gaze features following intentional correct actions (green), input recog-
nition errors (red), and user errors (orange) for the Tile Search task. Asterisks (*) correspond to data in the time series where 
the three time series signifcantly difered (corrected p < 0.05). Data is represented as Mean ± SEM 
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Figure 6: Visualizations of the time series of z-scored gaze features following intentional correct actions (green), input recog-
nition errors (red), and user errors (orange) for the Room Search task. Asterisks (*) correspond to the data samples in the time 
series that difered signifcantly (corrected p < 0.05). Data is represented as Mean ± SEM. 

these fndings suggest that gaze features had diferent temporal 
patterns following diferent input events. 

4.2 Temporal Dynamics of Gaze Features Were 
Consistent Across Diferent Tasks 

The fnding that gaze dynamics difered for intentional actions, 
input recognition errors, and user errors demonstrates that gaze 
dynamics can be a promising signal to use to detect various types 
of errors. However, to demonstrate the potential of this approach 
for error detection in working interaction systems, gaze dynamics 

cannot be specifc to a single task. Therefore, we tested H2 by 
examining whether the gaze patterns observed in the Tile Search 
task would generalize to a less controlled task, the Room Search 
dataset. 

Similar to the Tile Search task, in the Room Search task, partici-
pants provided input through clicks on a hand-held controller and 
the input recognition error injected clicks experimentally. However, 
there were several diferences between the two tasks that made the 
Room Search task more realistic. First, once the error was injected, 
the participant had to correct it immediately before moving on to 
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Figure 7: Visualizations of the time series of min-max normalized gaze features following intentional correct actions (green), 
input recognition errors (red), and user errors (orange) for the Tile Search task (solid line) and Room Search task (broken line). 
The Pearson Correlation r value between the pair of gaze features is shown on the top of each panel along with a an asterisk 
(*) if p < 0.05. Data is represented as Mean ± SEM. For simplicity, only the fve most commonly used and evaluated eye tracking 
features are displayed. 

any other tile in the Tile Search task, while in the Room Search task, 
the participant had the freedom to correct the input recognition 
error at any point during the session. This aspect of the Tile Search 
task required the participant to return their gaze to the tile that had 
been just viewed to correct it. Therefore, it could be argued that this 
action could invoke a stereotypical gaze pattern that would occur 
following an input recognition error that would have been absent 
for correct actions, resulting in diferences in gaze patterns between 
input types. This needed not be the case in the Room Search task. 
Second, the injected errors were injected only for non-target objects 
in the Tile Search task while they were injected for both target and 
non-target objects in the Room Search task, making it more realistic 
and increasing the number of input event types (Fig. 3). Third, the 
participant was mostly static during the Tile Search task and used 
a limited range of head movements to perform the task, whereas in 
the Room Search task, the participant could freely navigate the en-
vironment and could select or deselect objects in a less constrained 
manner. Given the variations between these two task constraints, 
we investigated if the gaze patterns observed after the three types 
of input events were consistent across both tasks. 

Following the previous approach (Fig. 5), the average of each 
feature’s values (aligned to the input event onset) for each time point 
was computed for each participant. Then, a one-way ANOVA was 
performed on each data point to determine which time points were 
statistically diferent for each feature and corrected for multiple 
comparisons using the FDR method. Similar to the results of the 
Tile-Search task, signifcant diferences (p < 0.05) were found among 
the three input events for all features after the onset of input events 
for Room-Search task as well (Fig. 6). 

The gaze patterns between the two tasks were qualitatively com-
pared by min-max normalizing the mean of each gaze feature per 

task and visualizing them (Fig. 7). To quantitatively compare them, 
the Pearson correlation was calculated between gaze features for 
the two tasks for each class and showed that the gaze features 
within the Tile Search and Room Search tasks had highly correlated 
gaze patterns (Fig. 7). 

The temporal patterns for some gaze features such as the fxa-
tion probability and the saccade probability were initially highly 
correlated but then separated after about 300 milliseconds. This 
could due to the diferences in task features between the two tasks. 
That is, in the Tile Search task, participants tended to perform a 
serial visual search, even though they were not instructed to do 
so, while in the Room Search task, participants tended to perform 
a random visual search. The diferences in the motor preparation 
for consecutive actions between these two forms of visual searches 
could explain the diferences in gaze temporal patterns. Together, 
these fndings suggest that the pattern of some gaze features fol-
lowing diferent input events were generalizable across diferent 
tasks. 

Given that the Room Search task was less constrained, there was 
a greater frequency of de-selections for intentional actions, input 
recognition errors, and user errors (Fig. 3). Therefore, we examined 
if, within each input event type, gaze features were consistent across 
diferent action types (i.e., selection and deselection). First, the 
average of each input triggered feature’s value for each action type 
was computed for each time point and participant (i.e., selection 
and de-selection) . A paired t-test was then performed for each 
sample point to determine which time points were statistically 
diferent between the two actions for each feature. No statistically 
signifcant diferences were found between the gaze features for the 
two action types for any of the gaze features (Fig. 8) suggesting that 
the patterns of gaze features were consistent across action types. 
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Together, these fndings suggest that gaze features depended on 
the type of input event and not on the means (i.e., action type) by 
which it was achieved. 

4.3 Temporal Dynamics of Gaze Features for 
Injected vs Real Input Recognition Errors 

Across the Tile Search (Fig. 5) and Room Search tasks (Fig. 6), 
the temporal patterns of gaze features difered following inten-
tional actions, input recognition errors, and user errors. However, 
in both cases, input recognition errors were simulated through 
semi-random injections. While these types of errors provide initial 

insights and advance our understanding of gaze behavior during 
human-computer interactions, they are not an accurate represen-
tation of the input recognition errors that would naturally occur 
in these interaction settings. It is possible that the gaze dynamics 
observed thus far are not representative of model-generated input 
recognition errors. As such, the Dice Game task was used to ex-
plore whether the patterns observed thus far would extend to a 
task controlled by an IMU-based pinch gesture recognizer. 

Similar to the previous approach, the gaze patterns between the 
Tile Search and the Dice Game tasks were qualitatively compared 
by min-max normalizing the mean of each gaze feature per task 
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Figure 10: Gaze dynamics for the types of input events across 
the datasets clustered separately in a low dimensional em-
bedding space. 

and visualizing them (Fig. 9). As a result, there was a consistent av-
erage ofset of 150 milliseconds for the gaze features for intentional 
actions in the Dice Game task, relative to the Tile Search task. This 
could be due a combination of several system specifc parameters 
that were diferent between the controller vs gesture recognizer. 

Therefore, to quantitatively compare the gaze features’ temporal 
patterns between the two tasks, the Pearson correlation was com-
puted between gaze features for the two tasks, as well as between 
gaze features for the two tasks after correcting for the systemic lag 
of 150 milliseconds (Fig. A2). 

Although gaze features following intentional clicks had a con-
sistent ofset due to a systemic lag, there was no ofset for the gaze 
features after user errors. The gaze features after input recognition 
errors did however, have inconsistent ofsets. This is because the 
gesture recognizer system had a higher tendency to produce false 
positives following a sudden increase in hand velocity. However, in 
the Tile Search task and the Room Search task, false positive input 
recognition errors were injected at specifc time windows. Given 
the diferent origins of these two types of input recognition errors 
and their occurrence during an interaction setting, diferences in 
gaze behavior following these two types of events was expected. 

A similar pattern of gaze behavior was also found between the 
Room Search task and Dice Game task for each of the three input 
event types (Fig. A3 with and without the ofset correction). This 
ofset issue is discussed in further detail in the Discussion section. 

4.4 A Deep Learning Model Can Classify Input 
Events Using Only Gaze Dynamics 

The results thus far have demonstrated that the gaze dynamics 
following intentional actions, input recognition errors, and user 
errors were diferent and that the diferences were consistent across 
tasks, selection versus deselection actions, and gesture recognizer 
errors versus injected input recognition errors. Together, these 
fndings demonstrate the feasibility of building a model that can 
detect the type of input event using only gaze dynamics. 

As a frst step to building the model, the gaze dynamics for the 
three input events across all three tasks were visualized in a low 
dimensional space. A t-stochastic neighbor embedding (t-SNE) ap-
proach [30] demonstrated that the gaze dynamics for the three 
input events clustered together in a low dimensional embedding 
space (Fig. 10). Specifcally, both injected and real input recognition 
errors were clustered, suggesting that there was a shared intrinsic 
pattern between these two temporal dynamics which was not ap-
parent in the above data analyses. This analysis thus suggests that 
a multi-class classifer could be trained to classify the three types 
of input events using gaze dynamics as input. 

For each task, a separate TCN model was also trained using 
the frst order diferences between the x, y, z head-corrected eye 
position data. Epochs of data following each input event were 
isolated, with time 0 refecting the input event onset and extending 
to ~650 milliseconds (i.e., 40 sample points) after the input event 
onset. 

The AUC-ROC-OVR scores showed above chance performance 
for all three models (chance = 0.5 for AUC-ROC-OVR) (Fig. 11). 
The respective confusion matrices also showed well above chance 
precision for each class for each model (chance=0.33 for confusion 
matrix). Furthermore, the precision for each class and model was 
well distributed, suggesting that the models were not performing 
well on one class at the cost of another. 

Motivated by the prior results that suggested that the gaze dy-
namics for all three classes of input events clustered together in 
a low dimensional embedding space across all three datasets, we 
hypothesized if we could train a single combined classifer to clas-
sify the three input classes across all three datasets. To investigate 
this, we trained a single TCN model with the 70% of the data from 
all three tasks combined, as input. We tested this model on the 
remaining 30% of data from all three tasks combined and found an 
AUC-ROC-OVR of 0.78, which was well above chance level (0.5). 
To ensure this model performed well on all the tasks individually, 
we also tested this model on the last 30% of the data from each task 
separately and found AUC-ROC-OVR scores of 0.75, 0.70 and 0.82 
respectively for the Tile Search, Room Search and Dice Game tasks 
(Fig. 12A). These scores were only a 2-5% reduction with compared 
to individual models trained and tested on each task separately. 
Despite this slight reduction in performance, the combined model 
had a signifcant advantage over the individual models because it 
was trained on all the tasks together. Thus, these results suggest 
that it could potentially generalize to a new task. By computing four 
confusion matrices for each of the four testing conditions (i.e., all 
tasks together and each of the three tasks separately), we confrmed 
that the model also performed well on each class for all the tasks 
together (Fig. 12B) and each task separately (Fig. 12C-E). 

Since the above models were trained and tested on data from the 
same participants, these models were not participant-independent. 
Therefore, we also trained a single, combined, participant-independent 
classifer that classifed the three input classes across all three 
datasets by training on 70% of the participants and testing on the 
remaining 30% (Fig. A4). This type of model’s performance (AUC-
ROC-OVR = .78) was similar to the previous participant-dependent 
model’s performance. 

https://chance=0.33
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Together, these results demonstrate that using only a user’s nat- 5 DISCUSSION 
ural gaze behavior, deep learning models can distinguish between In this study we tested two hypotheses for the gaze dynamics 
user errors, input recognition errors, and intentional selections. after event events. First, we demonstrated that it is possible to 

classify three diferent types of input events using only a user’s 
gaze behavior after an input event (H1) and then we showed that 
the gaze dynamics following these events were consistent across 
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distinct tasks, action types (selection vs. deselection), and injected 
versus recognizer-driven input errors (H2). 

5.1 The Generalizability of Gaze Dynamics 
Gesture-based recognition systems are susceptible to input recogni-
tion errors, which negatively afect user experiences. This research 
proposed the use of user gaze patterns following an input event to 
detect these errors, which then could be used to facilitate adaptive 
error mediation. However, to build a reliable detection model for 
input recognition errors, gaze behaviour following these errors 
must manifest consistently across tasks and input types. 

The data for both the Tile Search and Room Search tasks used 
in this research was collected using an HTC VIVE Pro controller, 
whereas the data for Dice Game was collected using a pinch gesture 
recognition system. This diference in input medium led to a lag 
of 150 milliseconds in the temporal dynamics between these two 
systems (Fig. 9, Fig. A3). Notably, this lag was consistent for all the 
gaze features for intentional selections, was not present for user 
errors, and was variable for input recognition errors. This could be 
due to several reasons. 

First, the pattern of gaze dynamics following intentional action 
was shifted consistency across the features (Fig. 9 by 150 millisec-
onds. This could be due to a combination of several factors, two of 
those being: (1) the computer vision based hand tracking for the 
target and IMU-based pinch recognition for selection were both 
less reliable and had some lag compared to the controller, which 
might have led participants to dwell after a selection to make sure 
the selections registered, (2) the cognitively more complex decision 
making that was required during selection in the Dice Game task 
might have led to slower movements between selections overall. 
More systematic future research is required to study the contribu-
tions of these confounding factors. 

Next, the gaze patterns after an injected input recognition error 
were diferent from those after a real recognition error. This is prob-
ably due to diferences in when input recognition errors occurred 
with the natural gesture recognizer in Dice Game task relative to 
when the errors were experimentally injected in the Tile Search and 
Room Search tasks. For example, the IMU-based recognizer used 
in the Dice Game task was more likely to produce input recogni-
tion errors during sudden changes in hand movement velocities 
or rapid/jerky hand movements (i.e., during pointing). However 
the window during which the simulated input recognition errors 
were pseudo-randomly injected in the other two tasks was agnos-
tic of the concurrent hand movement velocity. Although the data 
analysis showed diferences in gaze dynamics between these two 
systems for input recognition errors, in a low dimensional embed-
ding space, the gaze dynamics for both these errors were found 
to cluster together (Fig. 10). Furthermore, a TCN model was able 
to classify the gaze dynamics for both of these types of errors as 
the same class and distinguish this class from all other classes with 
well above chance performance (Fig. 12). These results suggest that 
the gaze features for these two types of errors might share some 
latent patterns that a deep learning model could leverage during 
classifcation. 

The results of the present study signifcantly set it apart from 
those of previous studies that have used gaze towards error detec-
tion such as Peacock et al [52]. For example Peacock et al used a 
simple two class logistic regression model to classify intentional 
actions and input recognition errors using a set of 10 gaze features. 
However, this approach might not work towards building a gener-
alizable model because diferent gaze features might be important 
in diferent tasks and contexts. For example, saccade amplitude 
and duration might be important features for a task with sparse 
targets requiring longer saccades while saccade velocity might be 
an important feature for a task involving rapid decision making 
and urgency. In this study we developed a generalizable model by 
using the frst order diferences of gaze positions rather than using 
gaze features circumventing the problem of task dependent fea-
ture selection. Second, we used a robust deep learning model (TCN 
architecture) and performed a three-class classifcation. Although 
our 3-class deep learning model has almost similar performance 
(AUC-ROC-OVR of 0.78) as Peacock et al.’s 2-class logisitc regres-
sion model (AUC-ROC of 0.80), it can detect three types of input 
events and performs well on three diferent tasks with signifcantly 
higher than chance level precision for all the classes (Fig. 11, Fig. 12, 
Fig. A4). 

5.2 Mediation Techniques and Applications 
Input recognition errors are particularly costly for user experiences 
so designing systems that are capable of detecting them in the 
moments after they occur afords the possibility of also designing 
error-type dependent error mediation techniques that could assist 
users with error recovery. 

5.2.1 Model Refinement and Personalization. One promising appli-
cation for the present work is to label data to improve or personalize 
input recognition models. For example, if an input recognition sys-
tem were able to detect an input recognition error, it could use this 
information to retrain its recognition model for an individual user 
to minimize such errors in the future. In some cases, systems might 
be able to detect errors without the model presented in this paper, 
particularly when an undo option is available, however, many of 
the actions taken in most systems cannot be undone (e.g., sending 
a message). Even if actions can be undone, users might not always 
to undo an action, particularly if the action is costly. As such, the 
present model provides a new option for detecting probable errors 
and demonstrates the feasibility of this approach. Specifcally, this 
research demonstrated the reliable discrimination of intentional 
actions versus input recognition errors across several tasks. 

5.2.2 Adaptive Error Mediation. This research also showed how 
gaze dynamics could be used to detect both input recognition er-
rors and user errors. Future systems could use this information 
to provide adaptive error recovery techniques that are specifc to 
certain error types. For example, to assist users with the correction 
of an input error, a system might launch a confrmation dialogue, 
whereas to assist users with a potential user error, a system might 
instead highlight an item. In other words, users might prefer dif-
ferent types of adaptive mediation techniques depending on if an 
error is recognizer-generated versus user-generated. 
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In future work, adaptive mediation techniques could be explored 
along three axes: what, when, and how. First, what are the diferent 
means of notifying the user of a recent potential error? For example, 
systems could use a heads-up display (HUD) that would be view 
invariant and noticeable regardless of where the user is looking, 
or, alternatively, they could provide a notifcation just above an 
incorrect object that might not always be in the user’s current feld 
of view. These diferent placements could have important implica-
tions in the management of visual clutter in the XR systems. Second, 
when should these mediation techniques be implemented? Previous 
work by Peacock et al. suggested that models perform best around 
600 milliseconds after an input event [52], however, depending on 
the probability of error detection in natural VR interactions, this 
duration could be fexible. For example, perhaps the system should 
take an evidence accumulation approach, launching adaptive medi-
ation as soon as it achieves an appropriate level of confdence about 
a probable error. Finally, how should these mediation techniques 
be implemented? Depending on the confdence level of the error 
detection, a system could adaptively propose diferent mediation 
techniques for smooth recovery from input recognition errors. For 
example, if detection confdence was high, a system could auto-
matically correct an error by undoing the action without the user 
requiring user input (i.e., active recovery). This could increase a 
user’s trust in the recognition system and create richer, more fuid 
interaction. If the detection confdence level was low, then a system 
could notify the user of a potential error and provide them with 
options to undo or cancel the recent action (i.e., passive recovery). 
Such system-driven, interactive error mediation techniques could 
save the user time during error recovery and enable low friction 
user experiences. 

5.2.3 Developing New Adaptive Designs. As a fnal potential ap-
plication, the fndings that (1) the gaze dynamics for injected and 
real input recognition errors cluster together in a low dimensional 
embedding space (Fig. 10) and (2) a deep learning model can be used 
to potentially classify both of these types of errors under a single 
class and distinguish this class from the user error and intentional 
actions (Fig. 12) has implications for how mediation techniques 
could be studied in the future. In particular, it suggests that train-
ing data for gaze-based error detection models, or experiments to 
test these models, need not use a gesture recognizer. Instead, such 
training data could integrate injected errors. This could enable for 
more efcient testing of error recognition models and the mediation 
techniques that use these models. 

5.3 Limitations and Future Work 
Although we show that a deep learning model can be used to clas-
sify the input events based on gaze dynamics, the performance of 
the present model (AUC-ROC-OVR = 0.78) might not be sufcient 
for use in a closed-loop interaction system. That is, it is still an 
open question if this level of task accuracy will sufce for the user 
to see a signifcant diference in their experience in real world VR 
interaction. This will depend on the application of the model (e.g., 
input recognizer personalization, adaptive error mediation) and the 
specifc design of the application. The TCN model demonstrated 
substantial performance improvements and could be improved in 

future work by exploring diferent architectures or adding addi-
tional or larger datasets. Another way to improve the model could 
be by using a multi-modal approach. That is, although gaze was 
used to detect input events, it is not the only indicator of error. 
Other modalities, such as hand movement and/or the recent his-
tory of selections, could provide rich information about ongoing 
interaction. Although such modalities could be cheaper to use and 
potentially increase accuracy along with gaze, they could also be 
slower. For example, eye movements have been found to precede 
hand movements [4, 53], suggesting that eye movements might 
be the earliest indicator of the user’s next interaction goal. Future 
work should examine if model performance can be improved by 
integrating other modalities as input. 

Furthermore, the present study focused on three tasks that were 
all point-and-click based and only situations where one gesture 
(i.e., pinch gesture) or one click could be performed. Users’ gaze 
behavior, however, might difer for other types of gestures and task 
interactions such as scrolling or swipe gestures or in situations 
where there are multiple gestures available, each for a diferent 
action. Thus, further investigation is needed into the utility of gaze 
behavior in such settings and the generalizability of gaze dynamics 
for diferent input events. 

Finally, this research only focused on reactive users gaze behav-
ior after an event and demonstrated the potential of using deep 
learning models to detect input events based on gaze features. How-
ever, future work needs to explore models that could use the gaze 
behavior before an event to predict the type of input events that 
would lead to an action [16]. These types of models could have 
levels of pro-active error control and mediation and assist users 
with low friction interactions. 

6 CONCLUSION 
The present research demonstrates that gaze dynamics alone can 
be used to detect input recognition errors and user errors soon 
after they occur. Systems employing such dynamics can thus use 
this information to solve the challenge of imperfect input recogni-
tion. That is, rather than improving a recognition model, systems 
could leverage natural user behaviors immediately following an 
input event to detect errors. The rapid detection of recent input 
recognition errors has critical implications for the development of 
intelligent systems that can assist with error recovery and can help 
increase the usability of input systems by supporting low friction 
interactions. 
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Figure A1: Visualizations of the time series of z-scored fxation duration feature, following intentional correct actions (green), 
input recognition errors (red), and user errors (orange) for the Tile Search task. Circular markers on the top correspond when 
the data signifcantly difered (corrected p < 0.05) between diferent conditions for diferent statistical tests as noted. This 
fgure uses the same format as Fig. 5. 
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Figure A2: Gaze features for diferent input event types for the Tile Search task with the controller key press (solid line) from 
Fig. 9 and the Dice Game task with the gestural input system (broken line) temporally shifted to the left by 150 milliseconds. 
This fgure uses the same format as Fig. 9 
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Figure A3: Gaze features for diferent input event types for the Room Search task with the controller key press (solid line) and 
the Dice Game task with the gestural input system (broken line) without any temporal shift (A) and with 150 milliseconds 
temporal shift to the left (B). This fgure uses the same format as Fig. 9. 
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Figure A4: A single, combined, participant-independent TCN deep learning model was found to classify input events based on 
eye gaze data alone after their occurrence, across 3 diferent tasks. (A) AUC-ROC-OVR scores from the combined, participant-
independent TCN model trained on all three tasks together and tested on all three tasks together (from left to right: the Tile 
Search task, Room Search task and Dice Search task). (B) A confusion matrix of the combined, participant-independent model 
trained on all three tasks and tested on all three tasks. (C) A confusion matrix of the combined, participant-independent model 
trained on all three tasks and tested on the Tile Search task. (D) A confusion matrix of the combined, participant-independent 
model trained on all three tasks and tested on the Room Search task (E) A confusion matrix of the combined, participant-
independent model trained on all three tasks and tested on the Dice Game task. (IA denotes intentional action, IRE denotes 
input recognition error, and UE denotes user error). Each cell in B-E is the precision for each class. This fgure uses the same 
format as Fig. 12. 
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