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Figure 1: This work explores using augmented reality (AR) to adapt functional task difficulty for motor-skill training. We built
a prototype AR adaptive training system and a conducted user study (N=16), where (a) participants trained to throw a ball into
a physical ring,. (b) For the training, participants wore a head-mounted display and practiced throwing the physical ball into a
virtual ring that either maintained its diameter or dynamically changed diameter based on their skill level to make the task

more or less difficult.

ABSTRACT

Adaptive training of motor-skills, where the difficulty level of the
training task is adapted optimally based on the learner’s skill lev-
els, has been shown to enable higher learning gains compared to
non-adaptive training. However, prior approaches rely on adapting
physical tools that are tedious to design and build. This work inves-
tigates using augmented reality (AR) to achieve a similar objective
of maintaining functional task difficulty — the difficulty experienced
by the learner - at an optimal challenge point during adaptive train-
ing. A study prototype of an AR adaptive basketball training system
was developed, wherein the learners train to throw a physical ball
into a virtual AR hoop seen through a head-mounted device. Results
from the study (N=16) aimed to measure the learning gains showed
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higher learning gains after adaptive AR training compared to non-
adaptive AR training. An analysis of participant feedback, however,
highlighted challenges with AR-based adaptive training, pointing
to the need for a different design approach compared to the physical
adaptive tools. Collectively, this exploratory study investigates the
use of AR for adaptive motor-skill learning and lays the foundation
for future research directions for the AR-tool design.
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1 INTRODUCTION

Learning motor skills is an essential part of human development,
and an extensive body of research has developed tools for this
purpose, including for skills such as riding a bike [3, 66], complex
movements in sports such as basketball [5, 48, 62], and physiother-
apy training and muscle rehabilitation [9, 42]. Various approaches
to supporting motor skill learning have also been investigated, in-
cluding varying instructional guidance [7], feedback [63], or task
support provided during training [33].

This work looks at one such approach, which is to optimize
functional task difficulty, i.e., the level of challenge experienced
by learners during training, based on the learner’s current skill
level [32]. Studies show that such adaptive motor skill training
leads to higher learning gains compared to non-adaptive train-
ing [26]. Recent research has demonstrated the learning benefits of
implementing this approach by physically adapting training tools to
adjust functional task difficulty based on learner performance [64].
For example, when training to throw a ball into a hoop, the diffi-
culty of the task can be adapted by adjusting the size and height of
the hoop to match the level of skill of the learner. The physical tool
adaptation approach has been shown to be flexible to support a wide
variety of different motor skills, such as skateboarding, balancing a
wobble-board, and training for golf [65].

Adaptation using physical tools, however, has inherent con-
straints, such as the cost and complexity of designing and building
physical tools, slow adaptation, and the possibility that tools break
during use. With this as motivation, the present work investigates
the possibility of adaptively optimizing functional task difficulty
using virtual training tools in Augmented Reality (AR). Unlike phys-
ical tools, virtual content presented in AR is not subject to many
of the limitations on physical tools. The promise is that AR could
make adaptive motor skills training more accessible.

To investigate this possibility, an exploratory study of motor
skill training using adaptive AR tools that adapt the functional task
difficulty was conducted. An adaptive hoop for a ball-throwing task
was developed (Figure 1) inspired by the seminal research study
on variable motor skill learning by Kerr and Booth [34]. The train-
ing system tracked the physical ball’s trajectory, monitored the
learner’s performance (using OptiTrack), and adapted the diameter
of a virtual hoop, displayed in AR via a Head Mounted Display (us-
ing HoloLens2), to match the user’s skill level. A between-subjects
user study with 16 participants was conducted to compare the per-
formance improvements after training using an adaptive AR hoop
(that changed its diameter) versus a non-adaptive AR hoop. Partici-
pant feedback was collected to further identify the challenges and
opportunities of designing adaptive tools in AR.

Our findings revealed that training with the adaptive AR tool
led to marginally higher learning gains compared non-adaptive AR
tools. However, the adaptive AR tools also created significant new
design challenges, such as the absence of interaction cues between
physical and virtual objects, which impacted task performance and
skill transfer. Using AR to implement adaptive motor-skill training
thus requires a new set of design strategies as compared to physical
tool adaptation. We discuss avenues for future research and design
opportunities to adapt the functional task difficulty in AR training
tools as the AR technology advances.
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In summary, this paper contributes to the design of AR-based
training tools through:

e A between-subjects exploratory study on training using an
adaptive AR tool that optimally adjusts the functional task
difficulty, which revealed the need for a distinct design para-
digm for adapting tools in AR compared to physical coun-
terparts.

e A thematic analysis of participant feedback to identify (a) the
design challenges in adapting tools in AR, including the
absence of interaction cues between virtual and physical
objects; (b) design opportunities for adapting training tools
in AR, using visualization overlays, and spatial, sensory, and
temporal cues.

2 RELATED WORK

We begin this section with a background on pedagogical frame-
works for adaptive motor skills training, particularly for varying
the functional task difficulty to maintain optimal challenge during
training. We then discuss the related systems designed for adaptive
training using both physical and virtual AR tools and highlight
the unexplored approach of using shape-change in virtual training
tools. We also highlight this gap through a discussion on the design
of AR training systems that use features like multimodal feedback
and instructions for learning, and point to the gap in exploring the
design of virtual shape-adaptation in AR and its impact on learning.

2.1 Adaptive Motor Skill Learning

Research on motor skill learning [51, 53] highlights that task diffi-
culty significantly impacts training outcomes [22]. Tasks that are
too easy underchallenge learners, while overly difficult ones over-
whelm them, limiting learning potential. Kelly [32] introduced the
concept of adaptive training, which dynamically adjusts task pa-
rameters based on learner performance, ensuring task difficulty
aligns with the learner’s capabilities for optimal learning. Effec-
tive adaptive training requires components such as performance
measurement, auto-adaptation logic, error calculation, and task
difficulty adjustment. Adapting functional task difficulty offers ben-
efits like scalable, personalized learning but remains challenging to
automate [1, 2, 32]. Although various models evaluate motor skill
learning [22, 24, 44, 55, 68], their application in automated systems
is still in its infancy, as discussed in the next subsection.

2.2 Adaptive Training Systems for Motor Skills

Prior HCI research has proposed adaptive training systems that of-
fer personalized and self-directed learning by adapting instructions,
guidance, or feedback during training [16, 32]. Examples include
De Kok et al’s system, which uses video analysis to tailor squat
instructions[19], Park and Lee’s Motion Echo Snowboard, which ad-
justs visual feedback for balance training [47], and Yamaoka et al.’s
dePENd, which uses magnetic support for guided path tracing [69].
While these systems emphasize personalized instruction, they often
overlook adapting functional task difficulty — a promising approach
where task difficulty dynamically adjusts to keep learners at an
optimal challenge level [26]. Building on this approach, researchers
designed tools like an adaptive basketball hoop that adjusts height
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and width based on performance, improving motivation and out-
comes compared to static or manually adaptive methods [64]. This
concept extends to adaptive training tools for skills like bike riding,
walking, and balancing a wobbleboard [65], as well as DigituSync
for fine motor skills in music training [45]. Despite its potential,
applying adaptive functional task difficulty in Augmented Reality
(AR) for motor skill training remains largely unexplored - a gap we
address by investigating adaptive AR training using a ball-throwing
activity to understand its design and user experience implications.

2.3 Augmented Reality Tools for Motor Skills

The design of AR tools for motor skill learning spans diverse appli-
cations, including sports (e.g., basketball [10, 38, 46, 61], football,
cycling [59], judo [15, 56], and other sports [17, 25, 41]), physical
education [43, 58], rehabilitation [20, 57], and professional skills
like machine assembly [28], industrial tool operation [12, 14], ro-
bot teleoperation [6], and medical surgery [50]. The design space
for these AR systems leverage various technologies, such as wear-
ables [29], hand-held devices [18], mirror-like screens [4, 36], spatial
AR [30, 40], and head-mounted displays [11, 31] to scaffold training.
While these diverse AR applications for motor-skill learning have
explored the design space of AR tools through non-adaptive design
approaches, we contribute to this existing literature by explor-
ing and extending the design space of AR training tools using the
adaptive-training framework. Currently, AR is used to scaffold learn-
ers’ training mainly through adaptive instructional guidance [7].
Studies show that such adaptive tools accelerate learning [63], out-
perform video-assisted instruction [13], improve body movement
accuracy in physiotherapy [57], increase fine motor accuracy for
drawing [37], and improve techniques for rock-climbing [67]. Our
research builds on this body of related work of adapting instructions
using visual overlays in AR by exploring an alternative approach
of adapting virtual tools in AR to scaffold learning.

2.4 Design Opportunities in Augmented Reality

AR environments offer several design affordances for adaptive train-
ing tools, with visual feedback being the most frequently used af-
fordance. Other AR features used to support adaptive training of
motor skills include auditory, haptic, or multimodal augmented
feedback [21, 23, 52]. However, these systems primarily employed a
correctional approach, where the system measured learners’ perfor-
mance and provided them with multimodal feedback on correcting
their actions. For example, the Augmented Practice Mirror displayed
visual feedback of a learner’s motion on top of a teacher’s to sup-
port the learning of physical motions in dance, sports, and craft-
making [36]. Similarly, Anywhere Hoop and Lin et als virtual free
throw training systems for basketball provided visual and auditory
feedback via a HoloLens to improve a learner’s throwing trajec-
tory [61]. While this approach of adapting instructional feedback
is explored extensively, some recent studies have also shown that
frequent feedback can increase cognitive load and hinder learn-
ing [54]. This points to the need to reimagine learning in AR using
alternative approaches in the future, for example by adapting the
functional task difficulty. Motivated to investigate the use of AR for
adaptive skill learning, we designed an explorative study that we
detail in the following section.
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3 EXPLORATORY USER STUDY
3.1 Study Goals:

To gain initial insights into the benefits and challenges of imple-
menting adaptive motor-skill training in AR using virtual training
tools, we adapted the method used in prior work by Turakhia et al.
[64] to evaluate the learning gains of adaptive physical tools. Specif-
ically, the goal was to answer the following research questions:

e RQ1: How do the learning gains and experiences of adaptive
AR training differ from non-adaptive AR training?

e RQ2: What additional design challenges arise when using
adaptive AR training tools to adapt functional task difficulty,
as compared to physical training tools?

With these goals in mind for our study, we chose the motor skill of
throwing a ball into a ring. For training the participants, we com-
pared AR training (adaptive and non-adaptive) conditions (Figure
1-b) with a control (non-adaptive physical) training condition using
a non-adaptive physical ring (Figure 1-a). To test the learning gains,
we then measured their performances in test conditions on the non-
adaptive physical ring (Figure 1-a). We calculated the differences
in the performances of test conditions using a between-subjects
study design and analyzed participants’ feedback to examine the
effects of adapting functional task difficulty in AR on their training
experiences.

3.2 Participants:

16 participants (9F, 7M) with ages between 23-63 years (U = 32 years,
0 = 8.5 years) ! with mean height 5’6" (0 = 3.5") were recruited
through an open-call for the study. They had varied prior experience
with ball sports ranging from never playing ball-sports (n=3), to
playing 10 yrs ago (n=3), between 2 to 5 years ago (n=6), a year
ago (n=2), to monthly frequency (n=2). 13 participants were right-
handed and 3 participants were ambidextrous. All participants had
some prior experience using either AR or VR devices (between 1.5
to 4 years).

3.3 Learning Task:

As in Turakhia et al. [64], the task was to throw a physical ball
into a ring or hoop from a fixed standing position (see Figure 1).
Each attempt took 3-6 seconds, which allowed for efficient data
collection. The participants threw a physical ball 2 into a physical
ring (for control (non-adaptive physical) and test conditions) or a
virtual AR ring seen through the HoloLens (for training conditions).

To measure the learner’s performance, we used OptiTrack to
monitor the ball’s trajectory and check if the attempt was successful
(i.e., the ball went inside the ring), partially failed (i.e., the ball did
not go in the ring but hit the rim), or completely failed (i.e., the ball
missed the ring). We awarded 1 point per successful attempt, 0.5
points per partially failed attempt, and 0 points per completely failed
attempt. In the AR setup, the AR ring changed color from white to

The majority of participants were in a fairly tight age range of (25-36) with the
exception of one participant aged 63 (M)

“In pilot studies, we experimented with throwing a virtual ball that was superimposed
on the physical ball. Because the feedback indicated that it distracted learners and
hindered training, we used only the physical ball for the study.
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Figure 2: (a) For the study’s test condition, participants trained to successfully throw a ball into a non-adaptive physical ring.

For the control condition of non-adaptive physical training, t

he participants trained to throw a physical ball inside the physical

ring (while wearing a head-mounted display (HMD) to eliminate the confounding factor of using an HMD in AR conditions)
(b) For the AR training, they wore a head-mounted display and practiced throwing the ball into a virtual ring that either
maintained its diameter or dynamically changed diameter based on their skill level to make the task more or less difficult.

green (1 point), or yellow (0.5 points), to red (0 points) (Figure 3).
These score points were used to change the functional task difficulty
by increasing or decreasing the virtual ring’s diameter.

3.4 Adaptive Task Difficulty Algorithm

To determine when to adapt the virtual ring in AR, we first moni-
tored a participant’s performance by tracking the ball’s trajectory
and checking if the attempt was successful (i.e., the ball went inside
the ring without touching the rim), partially failed (i.e., the ball did
not go in the ring but hit the rim), or completely failed (i.e., the ball
missed the ring). In the virtual AR setup, these scores also changed
the ring color from white to green (for one point), or yellow (for
half a point), to red (for no points) (Figure 3).

We then used the following learning algorithm 1 based on the
optimal functional task difficulty framework in the motor skill
learning literature by Guadagnoli et al. [26] to determine when to
adapt the task difficulty based on the performance score:

Algorithm 1 Pseudocode: Adaptive Learning Algorithm

Initialize at the lowest task difficulty
while task difficulty # highest do
(1) Assess Learner’s Performance
if attempt == true then
score = 1, ring = green
score = 0.5, ring = yellow
score = 0, ring = red

> By measuring score

b if attempt = success
> if attempt = partial success
> if attempt = failed

(2) Check if the Training is at the Optimal Challenge Point

Calculate the running average (denoted as running_average) of the score over
4 attempts

Calculate the current derivative of the running average

(3) Update task difficulty
if derivative == 0 then
if running_average > 0.5 then
increase task difficulty — by adapting harder (decrease ring dia. by

> By adapting the tool
b i.e. running average plateaued

10%)
else if running_average < 0.25 then
decrease task difficulty — by adapting easier (increase ring dia. by 10%)
else
maintain task difficulty — no adaptation
Repeat steps (1) (2) and (3) until task difficulty = highest

These points were used change the functional task difficulty by
increasing or decreasing the virtual ring’s diameter. To prevent the
ring diameter from changing after each attempt, a running average

with a window size of 4 was used (Equation 1). The window size
was determined based on observations from our pilot study that
showed that a smaller window could cause constant adaptations
due to outlier data points, whereas a larger window would result
in slower adaptations and longer durations of score plateauing.

Smtsm_t-- +sm_{n_1]

Tavg =
& n

(2)

dy = Tavg(im) ~ Tavgim-1)

To determine if performance was plateauing at a given difficulty
level, and thus the task difficulty needed to change, we computed
the derivative of the running average (Equation 2) on every attempt,
after the completion of the first two running average windows. If
the performance had plateaued (i.e., the derivative was zero), we
then assessed if the running average indicated that the task was too
easy (U >=0.5) or too hard (U =< 0.25). If the task was too easy we
decreased the diameter of the ring by 10%, if the task was too hard
we increased the diameter by 10%, otherwise, the task difficulty
was maintained and the ring diameter did not change. By adapting
the ring diameter so that the task was neither too easy (where the
participant consistently scored high) nor too difficult (where the
participant consistently scored low) and we could maintain the
optimal challenge point at which learning would be the highest.

Figure 3: (a) In the virtual AR setup, these scores also changed
the ring color from white to (b) green (for one point), or (c)
yellow (for half a point), to (d) red (for no points).
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3.5 Study Environment and Apparatus

We conducted the experiment within a room containing a 9’ x 9°
metal frame mounted with twenty-two Optitrack® cameras (Figure
1a). Note that while we used an external OptiTrack setup, in time we
imagine inside-out tracking on an HMD could provide this sensing
capability, removing the need for a specialized environment and
expensive tracking system.

Figure 4: The study system components: (a) the 5 centimeter
diameter physical ball, (b) the 20 centimeter diameter physi-
cal ring mounted on a physical stand, (c) the 20 centimeter
diameter virtual ring as seen through the HoloLens 2.

For the control (non-adaptive physical) training conditions and
the assessment tests, a physical Styrofoam ring with an inner di-
ameter of 20 cm was placed 1.5 meters from a dedicated throwing
location on the floor. The ring was mounted on a stand 1.2 meters
above the ground and tilted at a 45 degree angle. This distance was
based on the maximum interaction volume possible without losing
tracking accuracy.

For the AR-based training conditions, participants viewed a 20-
centimeter diameter virtual ring with HoloLens2 that was a holo-
graphic replica (mimicked the color and shape) of the physical ring.
We overlapped the positions and orientations of the virtual-AR and
the physical ring for target consistency throughout the study. We
placed retro-reflective markers on HoloLens2 and the physical ball
for tracking their positions with respect to the participant using
Optitrack. We then coincided the physical space coordinates with
the virtual space in Unity3D using common origin points.

Throughout the study, participants were asked to throw a soft
leather juggling-style ball of 5 cm in diameter (Fig 1-a). We used
a soft juggling ball rather than a rubber or plastic ball to avoid
damaging the Optitrack cameras and to buffer any miscalibration
resulting from the ball hitting the frame. We tracked the rotation
and trajectory of the ball using six retro-reflective 3mm markers
affixed to the ball. We implemented the realtime tracking using
Motive3 and Unity3D.

3.6 Procedure and Study Design

The study employed a between-subjects design, where participants
were placed into one of two groups. Group A completed a control
(non-adaptive physical) training condition and a non-adaptive AR
training condition. Group B completed a control (non-adaptive
physical) training condition and an adaptive AR training condition.
We used the non-adaptive physical training condition as our control
condition to compare the learning gains for the AR training. In the
control (non-adaptive physical) training condition, participants
attempted 60 throws at the physical ring. The difficulty of the task

30ptiTrack - Prime 22, https://optitrack.com/cameras/primex-22/
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(i.e., the diameter of the ring) did not change. During the training
conditions, participants attempted 60 throws at a virtual ring. For
non-adaptive AR training condition, the difficulty of the task (i.e.,
the diameter of the ring) also did not change. In the adaptive AR
training condition the ring changed diameter based on the adaptive
task difficulty algorithm described in this section.

- ~
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condition to compare the AR training )

Figure 5: The study employed a between-subjects design,
where participants (n=16) were placed into one of two groups.
Group A completed a control (non-adaptive physical) train-
ing condition and a non-adaptive AR training condition.
Group B completed a control (non-adaptive physical) train-
ing condition and an adaptive AR training condition.

Each participant started with short calibration step where they
performed an underhand and overhand throw at the physical and
the AR ring to familiarize themselves with the experimental setup.
After the calibration step and before any training conditions, partic-
ipants performed an initial assessment test where they attempted
20 throws at the physical ring. Then they completed one of their
two training conditions with 60 throws followed by a second as-
sessment test, with another 20 throws at the physical ring. They
then completed the second training condition of 60 throws followed
by a third assessment test of 20 throws. Across both groups, the
order of the control (non-adaptive physical) and AR (adaptive or
non-adaptive) training conditions was counterbalanced to mitigate
learning effects.

During the experiment, participants were instructed to score
as many points as possible. To avoid fatigue, participants took a
mandatory 5-minute break after each condition and assessment
test, in addition to voluntary breaks whenever they experienced
tiredness. The study took approximately 1 hour to complete with
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Study Stages Number of Throws
initial assessment test 20
training condition #1 60
post-training test #1 20
training condition #2 60
post-training test #2 20
total attempts 180

Table 1: Every participant attempted a total of 180 throws
during the study through the above stages.

each participant attempting 180 throws.? We recorded the ball
trajectory and rotation, timestamped video of the participants’ view
through the HoloLens, and their performance score per attempt. We
also recorded their verbal comments during the study and feedback
using our questionnaire. Finally, we collected qualitative feedback
through pre-study and post-study questionnaires.

To analyze participant feedback, we first transcribed the inter-
view video feedback and combined it with the feedback collected
through the post-study questionnaires. Then, two members of the
research team conducted a thematic analysis to identify emerging
themes. Two rounds of coding were performed and the inter-rater
reliability was over 80% [39, 60].

4 RESULTS

4.1 Learning Gains

To understand the impact of adapting the functional task difficulty
using virtual training tools in AR on the learning gains compared to
non-adaptive virtual training tools, we computed the performance
score difference between the first and second assessments and
the second and third assessments. The average performance score
difference when using the non-adaptive AR condition was lower (U
=-0.19 points, 0 = 1.94) than when using the adaptive AR condition
(U = 0.63 points, 0 = 0.53), with ANOVA showing no significant
difference between these conditions (p = 0.05; Figure 6). However,
the slightly higher score for adaptive AR training suggests that
adapting the functional task difficulty in AR can potentially lead to
higher learning gains compared to non-adaptive AR training.

We also performed a weighted ANOVA to account for unequal
datapoints between the three groups (as the datapoints for physi-
cal training were twice as the other two test groups). The results
indicated no statistically significant group differences, with an F(2,
29) = 0.337 and p = 0.717. To further explore potential pairwise
differences, we conducted an unweighted Tukey Honest Significant
Difference (HSD) post-hoc test shown in table 2. The test revealed
no significant differences between any group pairs.

Group 1 Group 2 Mean Diff | P-adj | Significant
Adaptive AR Nonadaptive AR 0.9375 0.4774 False
Adaptive AR Physical 0.0625 0.9967 False

Non-adaptive AR Physical -0.875 0.4024 False

Table 2: Unweighted Tukey Honest Significant Difference
(HSD) post-hoc test results to study the pairwise differences

*As in prior published work, this method is designed to compensate for variations in
participants’ stamina, fitness, and skill levels by allowing the participants to take as
much time and as many breaks as they needed to complete the throws, in addition to
mandatory breaks.
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Figure 6: The average performance score difference for the
baseline, non-adaptive AR training, and adaptive AR training.
Error bars depict the standard deviation. The error bars depict
the standard error.
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(Nbn-AR training) 3.75 4.06 1.81 1.94 1.88 1.88
Npreadaptive 3.25 325 275 275 325" | 350

raining
Adaptive AR 3.25 3.05 300" | 338" 35" 3.50"
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Figure 7: (top)Bar chart showing the median ratings for the
baseline, adaptive, and non-adaptive conditions. (bottom) A
table showing the average score on a 5-point Likert scale de-
scribing their feedback on the experience of training on each
of the three conditions along the dimensions of tiredness,
boredom, engagement, motivation, ease of learning, and pace
of learning. The error bars depict the standard error.

4.2 Learning Experience

While the participants reported a slightly higher preference for
the adaptive condition (Mdn = 2.88, 0 = 1.25) compared to the
non-adaptive condition (Mdn = 2.13, 0 = 1.25), they reported a sig-
nificantly higher preference for the baseline condition (Mdn = 4.44,
0 = 0.62) compared to both AR conditions (p = 0.05) (Figure 6-left).
We observed similar trends in ratings of training experience for
factors of: cognitive load (i.e., feeling tired and bored), excitement
(i.e., feeling engaged and motivated), and learning (i.e., ease and
pace of learning). When asked about the reasons for their prefer-
ences, participants stated that the baseline condition was “more
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real” (P6), “blended well with the environment" (P14), and made them
feel “comfortable [...] because it is exactly how [they] expect the ball
to behave while throwing it" (P1).

Study Limitation: Our study employed a between-participants
design to avoid learning or transfer effects between adaptive and
non-adaptive AR conditions. While this helped isolate the effects
of each condition, it limited our ability to compare individual per-
formance across conditions and required a larger sample size to
account for inter-individual variability. Differences in prior expe-
rience, spatial reasoning, or familiarity with AR technology may
also have influenced outcomes. A within-participants design could
allow for more direct comparison and better control of individual
differences.

In summary, the results addressing RQ1 suggest that there may
be a trend towards improved performance and increased prefer-
ence for adaptive AR, but further investigation is needed to estab-
lish statistical significance. Additionally, the significantly higher
preference for the baseline condition over both the AR conditions
underscores the need to further study the impact and complexities
of designing adaptation strategies for AR training tools in the same
way as physical adaptive training tools. We examine this in the
next section.

4.3 Design Insights for AR Adaptive Training

We collected feedback on participants’ training experiences via an
open-ended questionnaire and categorized their feedback along the
following themes that point to the design challenges in leveraging
AR affordances for adapting functional task difficulty.

4.3.1 Limited Visual Cues Affecting the Depth Perception. Partici-
pants reported relying on environmental visual cues, such as shad-
ows and object occlusions, for depth perception during training,
for example when planning throws, judging ring distance, and ver-
ifying that the ball had passed through the ring. In the baseline
condition, “blending with the environment and appropriate depth
perception” (P13) facilitated learning. In contrast, the AR conditions
lacked these cues, making depth harder to judge. P8 noted diffi-
culty perceiving “virtual depth felt harder to perceive and understand
where it [the system] thinks the ball hit the rim”, while adaptive
AR further complicated depth perception, with ring size changes
sometimes misinterpreted as distance shifts. P9 reported feeling
no improvement due to poor depth perception, and P10 found “vi-
sualization didn’t help me understand where the ring was or if the
ball went in”. Participants suggested adding visual and auditory
feedback to address these issues (P12). This highlights the design
challenge of synchronizing elements like shadows and occlusion
with AR tool adaptations for better depth perception.

4.3.2 Limited Cues Affecting Performance Assessment. Our analysis
highlighted the critical role of environmental cues - visual, auditory,
and multimodal - in motor skill learning. These cues that result
from the interaction between objects and the environment were
important to participants when assessing their performance and
updating their strategy for the action. Participants relied on these
cues to assess performance and refine their strategies. For example,
P11 noted that “in the real condition, feedback from seeing the rim
distorted after being hit by the ball, the sound of the ball when it hit
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the rim, and following the ball trajectory were helpful, none of these
were present in the AR condition”. Similarly, auditory and vibration
cues indicated if the ball was thrown with excessive force or too far,
which were lacking in AR. Limited visual feedback (e.g., ring color
changes) and the absence of cues from the physical ball interacting
with the virtual rim hindered error-based learning and strategy
adjustment. P14 observed that “as true for any physical entity, the
visual cues such as shaking when hit on the rim and auditory feedback
were information on the outcomes of the throw trial, the non-adaptive
AR mode lacked the aforementioned, leading to frequent misjudgments
of the throw”. Participants also cited how “the lack of ‘the auditory
feedback when the ball hit the ring’ in the non-adaptive AR mode
hindered the learning process” (P13), and made the experience seem
unreal, e.g., ‘T couldn’t get the voice feedback in AR (e.g., hitting the
rim), the feeling was not real” (P12). This reveals the design challenge
of simulating realistic interactions between AR and physical objects,
which is harder than simulating interactions between multiple AR
objects.

4.3.3 AR Training Affecting Skill-transfer to Physical Environments.
Participants’ unfamiliarity with AR, (in both adaptive and non-
adaptive AR conditions) made them feel as though they were learn-
ing a new task, hindering skill transfer during assessment condition
which was on a non-AR setup. P6 noted being “more used to the
non-AR mode,” while P1 found it challenging to mentally align the
real ball with the AR ring, as “the non-AR mode was consistent with
real-world expectations.” Similarly, P5 described AR as a “learning
experience” where they questioned AR’s physical rules instead of
focusing solely on the motor skill, unlike the physical condition
where established physics were intuitive. This highlights a design
challenge: learning unfamiliar environmental affordances adds task

difficulty.

These themes address RQ2, highlighting subtle discrepancies be-
tween real-world and augmented tasks. They reveal that designing
adaptive AR tools demands a distinct approach compared to physi-
cal tools. We discuss this in detail in the next section.

5 DISCUSSION

The results of our exploratory study indicate that designing adaptive
AR training tools requires a careful consideration of the interac-
tions between the learner, physical objects, virtual AR objects, and
the learning environment. This section explores some design and
research opportunities for adapting functional task difficulty using
AR, considering current and future AR capabilities.

5.1 Current Opportunities - Adapting Simple
AR Overlays

Despite the limitations of current technology in sensing contextual
information, capturing the full-range of nuanced interactions, and
simulating realistic adaptations, we see design opportunities for
adapting functional task difficulty using AR-visualization overlays,
such as text or graphic markers superimposed on physical tools and
environments. For instance, in sports training, virtual markers could
guide players by superimposing targets on the field, guiding players
to aim at specific locations. Adjusting marker placement can allow
adaptive training for skill enhancement. We observe this method
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has been used in 2D AR for aiding mobility in disabled children [49],
but its application in 3D immersive AR remains unexplored. Simi-
larly, AR visualization overlays could be used to provide support
during a task. For example, overlays providing static cues [14] such
as virtual markers or annotations, and dynamic cues [17] such
as animations, simulations, or interactive virtual 3D models, can
be used to guide learners’ actions, provide additional information
about task planning, or highlight critical areas of focus during task
execution. These static and dynamic visualization overlays can be
adjusted in real-time based on the learner’s performance, allowing
for adaptive and personalized support provided to the learner that
can be adjusted as the learner improves their skill level.

Another aspect to consider that may influence dissonance in
depth perception, self-assessment, and skill transfer could be the
vergence-accommodation conflict (VAC), which sometimes occurs
in AR systems because of a discrepancy between the inward/outward
rotation of the eyes (vergence) and the eye’s focus on the AR screen
(accommodation) [8]. While some research has shown that VAC can
hinder visual performance and cause visual fatigue [27], the recent
advances that resolve VAC in HMDs [35] offer the opportunity
to study the limiting effects of VAC specifically in the context of
motor-skill learning and incorporate the insights while designing
adaption.

5.2 Near Future Opportunities - Adapting
Multimodal Cues and Realism

As advances in tracking, depth sensing, and spatial mapping enable
precise AR object placement and progress in graphics, physics,
and object recognition enhances realism, more design possibilities
open up to adapt the functional task difficulty through multimodal
cues. Our insights on how learners rely on interaction cues for task
execution, planning, and performance assessment give directions
for adapting multimodal cues. Spatial cues that impact depth and
distance perception, sensory cues that provide visual and auditory
information, and temporal cues that provide information about the
speed and the time of interaction can all be adapted in interesting
ways. For example, in a virtual assembly task, the perception of
depth cues can be adapted to increase or decrease the perceived
distance between objects and adapt the functional task difficulty
based on learners’ task precision. Or, in a surgical simulation, the
auditory cues representing the sound of a successful incision can be
intensified or attenuated to make the task easier as per the learner’s
abilities and optimize the feedback support. Likewise, in a basketball
shooting training scenario, the speed at which the feedback on shot
accuracy and trajectory can be adjusted as increasing the speed
raises the task difficulty level because the learner needs to make
quicker adjustments to react.

5.3 Future Opportunities - Adapting Perception:

As AR technologies advance further, designers will gain additional
opportunities to fine-tune AR cues to intentionally manipulate re-
alism to change the functional task difficulty. An example of this
manipulation would be to selectively ‘mute’ certain visual, spatial,
and multimodal cues associated with the task while keeping all
others stable. For example, the system could simulate a basketball
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hoop that functions exactly as a real hoop would, but mute the
sound of the ball and hoop interacting, or the shake of the hoop
when impacted by the ball, or some other individual cue. This ma-
nipulation of realism may allow learners to rely less on particular
cues and develop greater expertise in motor skills as a result. An-
other speculative idea could be to reimagine how objects in a motor
skill task could be altered in creative ways. For example, imagine
an illuminated transparent physical ball thrown at a target that
switches off once the ball is thrown and a virtual ball in AR is shown
in replacement to the user in slow motion to depict their throw
trajectory. As the learners gain a better understanding of the task,
the speed of the AR ball can be adjusted accordingly.

These design prospects expand the design space for AR tools for
personalized motor skill learning through adaptation of functional
task difficulty, and we hope that these ideas can form an initial road
map for further research in this space.

6 LIMITATIONS AND FUTURE WORK

While our exploratory study revealed insights into the design of AR
adaptive training tools, we acknowledge it has limitations which
should be addressed in future work. We focused on specific ball-
throwing tasks which may limit the generalizability of our results
to other complex motor skills. Building and evaluating AR adaptive
training tools for additional motor skills could give a richer picture
of the challenges and opportunities in this space. We also acknowl-
edge that a single-session study may miss important aspects of
motor skill learning. Examining long-term skill acquisition through
longitudinal studies with more participants is important to gain a
comprehensive picture of AR’s impact on motor skill learning. It is
also noteworthy that extended use of AR head-mounted devices can
lead to discomfort and distraction and it is important to consider
user comfort and ergonomics in tool design.

Informed by our insights, we are currently developing a design
framework for adaptive AR learning which will be evaluated by
building and testing varied study prototypes for adaptive training
tools in AR (starting from the insights in Section 5.1). We also
plan to explore the combination of our adaptive functional task
approach with established instruction and feedback techniques, as
we believe adaptive multimodal guidance in conjunction with task
difficulty adjustment could enhance AR’s effectiveness for motor
skill learning. Finally, in this work we limited our scope to AR tools,
but the insights gained from our study could inform future research
on adaptive tools in Virtual Reality as well.

7 CONCLUSION

In conclusion, this work fills a gap in research by exploring the use
of augmented reality to design adaptive tools adjusting functional
task difficulty during motor skill training. Through a user study,
we uncovered a novel set of challenges in designing adaptive AR
training tools, concluding that existing methods for physical tools
may not apply directly to AR. Our findings suggest new design
opportunities, such as adjusting visualization targets, spatial cues,
sensory cues, temporal cues, and realism manipulation. Together,
this research reveals the path forward for future investigations into
motor skill training techniques enabled by augmented reality.



Investigating Augmented Reality for Adaptive Motor-Skill Training

ACKNOWLEDGMENTS

We thank Jared Braun and Olivia Edgington for their valuable
contributions to the project.

REFERENCES

[1] ZA Abbas and Jamie S North. 2018. Good-vs. poor-trial feedback in motor
learning: The role of self-efficacy and intrinsic motivation across levels of task
difficulty. Journal of Learning and Instruction 55 (2018), 105-112. https://doi.org/
10.1016/j.learninstruc.2017.09.009

[2] Jack A Adams. 1971. A closed-loop theory of motor learning. Journal of motor

behavior 3, 2 (1971), 111-150. https://doi.org/10.1080/00222895.1971.10734898

Rajwa Al-Hrathi, Ali Karime, Hussein Al-Osman, and Abdulmotaleb El Saddik.

2012. Exerlearn Bike: An Exergaming System for Children’s Educational and

Physical Well-Being. In 2012 IEEE International Conference on Multimedia and

Expo Workshops. 489-494. https://doi.org/10.1109/ICMEW.2012.91

Fraser Anderson, Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2013.

YouMove: Enhancing Movement Training with an Augmented Reality Mirror. In

Proceedings of the 26th Annual ACM Symposium on User Interface Software and

Technology (St. Andrews, Scotland, United Kingdom) (UIST ’13). Association for

Computing Machinery, New York, NY, USA, 311-320. https://doi.org/10.1145/

2501988.2502045

Hippokratis Apostolidis, Nikolaos Politopoulos, Panagiotis Stylianidis, Agisi-

laos Chaldogeridis, Nikolaos Stavropoulos, and Thrasyvoulos Tsiatsos. 2018.

Instructional mirroring applied in basketball shooting technique. In Interactive

Mobile Communication Technologies and Learning: Proceedings of the 11th IMCL

Conference. Springer, 603-611.

Stephanie Arevalo Arboleda, Franziska Riicker, Tim Dierks, and Jens Gerken. 2021.

Assisting Manipulation and Grasping in Robot Teleoperation with Augmented

Reality Visual Cues. In Proceedings of the 2021 CHI Conference on Human Factors

in Computing Systems (Yokohama, Japan) (CHI "21). Association for Computing

Machinery, New York, NY, USA, Article 728, 14 pages. https://doi.org/10.1145/

3411764.3445398

[7] UH Ariffin, NAM Mokmin, and MA Akmal. 2022. Augmented reality technol-
ogy in physical education: A systematic review in instructional design, and AR
implementation option over the last 5 years. Advanced Journal of Technical and
Vocational Education 6, 1 (2022), 13-20.

[8] Steve Aukstakalnis. 2016. Practical augmented reality: A guide to the technologies,
applications, and human factors for AR and VR. Addison-Wesley Professional.

[9] Yee Mon Aung and Adel Al-Jumaily. 2011. Rehabilitation exercise with real-time
muscle simulation based EMG and AR. In 2011 11th International Conference on
Hybrid Intelligent Systems (HIS). IEEE, 641-646.

[10] Patrick Baudisch, Henning Pohl, Stefanie Reinicke, Emilia Wittmers, Patrick
Lithne, Marius Knaust, Sven Kohler, Patrick Schmidt, and Christian Holz. 2014.
Imaginary reality basketball: A ball game without a ball. In CHI'14 Extended
Abstracts on Human Factors in Computing Systems. 575-578.

[11] James Baumeister, Seung Youb Ssin, Neven AM ElSayed, Jillian Dorrian, David P
Webb, James A Walsh, Timothy M Simon, Andrew Irlitti, Ross T Smith, Mark
Kohler, et al. 2017. Cognitive cost of using augmented reality displays. IEEE
transactions on visualization and computer graphics 23, 11 (2017), 2378-2388.

[12] TimBosch, Gu van Rhijn, Frank Krause, Reinier Kénemann, Ellen S. Wilschut, and
Michiel de Looze. 2020. Spatial Augmented Reality: A Tool for Operator Guidance
and Training Evaluated in Five Industrial Case Studies. In Proceedings of the
13th ACM International Conference on PErvasive Technologies Related to Assistive
Environments (Corfu, Greece) (PETRA °20). Association for Computing Machinery,
New York, NY, USA, Article 40, 7 pages. https://doi.org/10.1145/3389189.3397975

[13] Kuo-En Chang, Jia Zhang, Yang-Sheng Huang, Tzu-Chien Liu, and Yao-Ting
Sung. 2020. Applying augmented reality in physical education on motor skills
learning. Interactive Learning Environments 28, 6 (2020), 685-697.

[14] Jean-Rémy Chardonnet, Guillaume Fromentin, and José Outeiro. 2017. Aug-

mented reality as an aid for the use of machine tools. Res. & Sci. Today 13 (2017),

25.

Wojciech B Cieslniski, Janusz Sobecki, Pawet A Piepiora, Zbigniew N Piepiora,

and Kazimierz Witkowski. 2016. Application of the Augmented Reality in pro-

totyping the educational simulator in sport-the example of judo. In Journal of

Physics: Conference Series, Vol. 710. IOP Publishing, 012016.

[16] Dav Clark and Richard B Ivry. 2010. Multiple systems for motor skill learning.

Wiley Interdisciplinary Reviews: Cognitive Science 1, 4 (2010), 461-467.

Alysson Messias da Silva, SG Gustavo, and Francisco Petrénio Alencar de

Medeiros. 2021. A Review on Augmented Reality Applied to Sports. In 2021

16th Iberian Conference on Information Systems and Technologies (CISTI). IEEE,

1-6.

Florian Daiber, Felix Kosmalla, and Antonio Kriiger. 2013. BouldAR: using

augmented reality to support collaborative boulder training. In CHI'13 Extended

Abstracts on Human Factors in Computing Systems. 949-954.

[3

=

=

w1
=

G

=

[15

(17

[18

[19

[20

[21]

~
5,

[23

[24

[25

[26]

[27

[28

[29

&
=

[31

[32

[33

[34

[35

[36

(37

Gl 25, May 26-29, 2025, Kelowna, BC

Iwan de Kok, Julian Hough, Felix Hiilsmann, Mario Botsch, David Schlangen,
and Stefan Kopp. 2015. A Multimodal System for Real-Time Action Instruction in
Motor Skill Learning. In Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction (Seattle, Washington, USA) (ICMI °15). Association for
Computing Machinery, New York, NY, USA, 355-362. https://doi.org/10.1145/
2818346.2820746

Alessandro De Mauro, Belinda Lange, and Andreas Diinser. 2014. Advanced user
interfaces for neurorehabilitation.

Alena Denisova and Paul Cairns. 2015. Adaptation in digital games: the effect of
challenge adjustment on player performance and experience. In Proceedings of
the 2015 Annual Symposium on Computer-Human Interaction in Play. 97-101.
William H Edwards. 2010. Motor learning and control: From theory to practice.
Cengage Learning.

Peter Eisert, Jurgen Rurainsky, and Philipp Fechteler. 2007. Virtual mirror: Real-
time tracking of shoes in augmented reality environments. In 2007 IEEE Interna-
tional Conference on Image Processing, Vol. 2. IEEE, II-557.

Paul M Fitts. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of experimental psychology 47, 6
(1954), 381. https://doi.org/10.1037/h0055392

Stefan Gradl, Bjoern M Eskofier, Dominic Eskofier, Christopher Mutschler, and
Stephan Otto. 2016. Virtual and augmented reality in sports: an overview and
acceptance study. In Proceedings of the 2016 ACM International Joint Conference
on Pervasive and Ubiquitous Computing: Adjunct. 885-888.

Mark A Guadagnoli and Timothy D Lee. 2004. Challenge point: a framework
for conceptualizing the effects of various practice conditions in motor learning.
Journal of motor behavior 36, 2 (2004), 212-224. https://doi.org/10.3200/JMBR.36.
2.212-224

David M Hoffman, Ahna R Girshick, Kurt Akeley, and Martin S Banks. 2008.
Vergence—-accommodation conflicts hinder visual performance and cause visual
fatigue. Journal of vision 8, 3 (2008), 33-33.

Gaoping Huang, Xun Qian, Tianyi Wang, Fagun Patel, Maitreya Sreeram, Yuanzhi
Cao, Karthik Ramani, and Alexander J. Quinn. 2021. AdapTutAR: An Adaptive
Tutoring System for Machine Tasks in Augmented Reality. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI °21). Association for Computing Machinery, New York, NY, USA, Article
417, 15 pages.  https://doi.org/10.1145/3411764.3445283

Tony Jebara, Cyrus Eyster, Joshua Weaver, Thad Starner, and Alex Pentland.
1997. Stochasticks: Augmenting the billiards experience with probabilistic vision
and wearable computers. In Digest of Papers. First International Symposium on
Wearable Computers. IEEE, 138-145.

Raine Kajastila, Leo Holsti, and Perttu Haméldinen. 2016. The augmented climb-
ing wall: High-exertion proximity interaction on a wall-sized interactive surface.
In Proceedings of the 2016 CHI conference on human factors in computing systems.
758-769.

Viktor Kalméan, Csaba Baczd, Makis Livadas, and Tamas Csielka. 2015. Wear-
able technology to help with visual challenges—two case studies. In Assistive
technology. IOS Press, 526-532.

Charles R Kelley. 1969. What is adaptive training? Human Factors 11, 6 (1969),
547-556. https://doi.org/10.1177/001872086901100602

Philip Kelly and Noel E O’Connor. 2012. Visualisation of tennis swings for
coaching. In 2012 13th International Workshop on Image Analysis for Multimedia
Interactive Services. IEEE, 1-4.

Robert Kerr and Bernard Booth. 1978. Specific and varied practice of motor skill.
Journal of Perceptual and motor skills 46, 2 (1978), 395-401. https://doi.org/10.
1177/003151257804600201

Gregory Kramida. 2015. Resolving the vergence-accommodation conflict in head-
mounted displays. IEEE transactions on visualization and computer graphics 22, 7
(2015), 1912-1931.

Itaru Kuramoto, Yukari Nishimura, Keiko Yamamoto, Yu Shibuya, and Yoshihiro
Tsujino. 2013. Visualizing velocity and acceleration on augmented practice mirror
self-learning support system of physical motion. In 2013 Second I[AI International
Conference on Advanced Applied Informatics. IEEE, 365-368.

Dwi Ely Kurniawan, Parulian Silalahi, and Adelia Pratiwi. 2019. ARtrace: Aug-
mented Reality for Student’s Fine Motor Learning. In 2019 2nd International
Conference on Applied Engineering (ICAE). IEEE, 1-5.

Tica Lin, Rishi Singh, Yalong Yang, Carolina Nobre, Johanna Beyer, Maurice A
Smith, and Hanspeter Pfister. 2021. Towards an understanding of situated ar
visualization for basketball free-throw training. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. 1-13.

Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. sage.

Danica Mast, Michel Bosman, Sylvia Schipper, and Sanne de Vries. 2017. Bal-
anSAR: Using spatial augmented reality to train children’s balancing skills in
physical education. In Proceedings of the Eleventh International Conference on
Tangible, Embedded, and Embodied Interaction. 625-631.

Helen C Miles, Serban R Pop, Simon ] Watt, Gavin P Lawrence, and Nigel W John.
2012. A review of virtual environments for training in ball sports. Computers &
Graphics 36, 6 (2012), 714-726.


https://doi.org/10.1016/j.learninstruc.2017.09.009
https://doi.org/10.1016/j.learninstruc.2017.09.009
https://doi.org/10.1080/00222895.1971.10734898
https://doi.org/10.1109/ICMEW.2012.91
https://doi.org/10.1145/2501988.2502045
https://doi.org/10.1145/2501988.2502045
https://doi.org/10.1145/3411764.3445398
https://doi.org/10.1145/3411764.3445398
https://doi.org/10.1145/3389189.3397975
https://doi.org/10.1145/2818346.2820746
https://doi.org/10.1145/2818346.2820746
https://doi.org/10.1037/h0055392
https://doi.org/10.3200/JMBR.36.2.212-224
https://doi.org/10.3200/JMBR.36.2.212-224
https://doi.org/10.1145/3411764.3445283
https://doi.org/10.1177/001872086901100602
https://doi.org/10.1177/003151257804600201
https://doi.org/10.1177/003151257804600201

Gl ’25, May 26-29, 2025, Kelowna, BC

[42] Maria F Montoya, John E Mufioz, and Oscar A Henao. 2020. Enhancing virtual
rehabilitation in upper limbs with biocybernetic adaptation: the effects of virtual
reality on perceived muscle fatigue, game performance and user experience.
IEEE Transactions on Neural Systems and Rehabilitation Engineering 28, 3 (2020),
740-747.

[43] Antonio-José Moreno-Guerrero, Santiago Alonso Garcia, Magdalena Ramos
Navas-Parejo, Maria Natalia Campos-Soto, and Gerardo Gémez Garcia. 2020.
Augmented reality as a resource for improving learning in the physical education
classroom. International journal of environmental research and public health 17,
10 (2020), 3637.

[44] Karl M Newell, Yeou-Teh Liu, and Gottfried Mayer-Kress. 2001. Time scales in

motor learning and development. Journal of Psychological review 108, 1 (2001),

57. https://doi.org/10.1037/0033-295X.108.1.57

Jun Nishida, Yudai Tanaka, Romain Nith, and Pedro Lopes. 2022. DigituSync: A

Dual-User Passive Exoskeleton Glove That Adaptively Shares Hand Gestures. In

Proceedings of the 35th Annual ACM Symposium on User Interface Software and

Technology. 1-12.

Mitchell Page and Andrew Vande Moere. 2007. Evaluating a wearable display

jersey for augmenting team sports awareness. In Pervasive Computing: 5th Interna-

tional Conference, PERVASIVE 2007, Toronto, Canada, May 13-16, 2007. Proceedings

5. Springer, 91-108.

[47] Hyung Kun Park and Woohun Lee. 2016. Motion Echo Snowboard: Enhancing
Body Movement Perception in Sport via Visually Augmented Feedback. In Pro-
ceedings of the 2016 ACM Conference on Designing Interactive Systems (DIS’16).
192-203. https://doi.org/10.1145/2901790.2901797

[48] Miguel Portaz, Raul Cabestrero, Pilar Quirds, and Olga C Santos. 2024. Al-

Powered Psychomotor Learning Through Basketball Practice: Opportunities and

Challenges. Mind, Body, and Digital Brains (2024), 193-215.

Emmanuelle Richard, Valérie Billaudeau, Paul Richard, and Gilles Gaudin. 2007.

Augmented reality for rehabilitation of cognitive disabled children: A preliminary

study. In 2007 virtual rehabilitation. IEEE, 102-108.

Sandro Ropelato, Marino Menozzi, Dominique Michel, and Michael Siegrist.

2020. Augmented reality microsurgery: a tool for training micromanipulations

in ophthalmic surgery using augmented reality. Simulation in Healthcare 15, 2

(2020), 122-127.

[51] Alan W Salmoni, Richard A Schmidt, and Charles B Walter. 1984. Knowledge

of results and motor learning: a review and critical reappraisal. Journal of

Psychological bulletin 95, 3 (1984), 355. https://doi.org/10.1037/0033-2909.95.3.355

Yuji Sano, Koya Sato, Ryoichiro Shiraishi, and Mai Otsuki. 2016. Sports support

system: Augmented ball game for filling gap between player skill levels. In

Proceedings of the 2016 ACM International Conference on Interactive Surfaces and

Spaces. 361-366.

Richard A Schmidt. 1975. A schema theory of discrete motor skill learning. Journal

of Psychological review 82, 4 (1975), 225. https://doi.org/10.1037/H0076770

[54] Richard A Schmidt. 1991. Frequent augmented feedback can degrade learning:

Evidence and interpretations. In Tutorials in motor neuroscience. Springer, 59-75.

Isabelle M Shuggi, Hyuk Oh, Patricia A Shewokis, and Rodolphe J Gentili. 2017.

Mental workload and motor performance dynamics during practice of reaching

movements under various levels of task difficulty. Journal of Neuroscience 360

(2017), 166-179. https://doi.org/10.1016/j.neuroscience.2017.07.048

[56] Cezary Sieluzycki, Patryk Kaczmarczyk, Janusz Sobecki, Kazimierz Witkowski,

Jarostaw Maslinski, and Wojciech Cieslinski. 2016. Microsoft Kinect as a tool to

support training in professional sports: augmented reality application to Tachi-

Waza techniques in judo. In 2016 Third European Network Intelligence Conference

(ENIC). IEEE, 153-158.

Rajinder Sodhi, Hrvoje Benko, and Andrew Wilson. 2012. LightGuide: projected

visualizations for hand movement guidance. In Proceedings of the SIGCHI Confer-

ence on Human Factors in Computing Systems. 179-188.

[58] Pooya Soltani and Antoine HP Morice. 2020. Augmented reality tools for sports
education and training. Computers & Education 155 (2020), 103923.

[59] Gabor Sorés, Florian Daiber, and Tomer Weller. 2013. Cyclo: a personal bike
coach through the glass. In SSIGGRAPH Asia 2013 Symposium on Mobile Graphics
and Interactive Applications. 1-4.

[60] Sharon Spall. 1998. Peer debriefing in qualitative research: Emerging operational

models. Qualitative inquiry 4, 2 (1998), 280-292.

Masayasu Sumiya, Wataru Yamada, and Keiichi Ochiai. 2022. Anywhere Hoop:

Virtual Free Throw Training System. In Adjunct Proceedings of the 35th Annual

ACM Symposium on User Interface Software and Technology. 1-3.

[62] Feng Sun and Chao Zheng. 2021. The application of basketball technology multi-

media computer-assisted instruction courseware in physical education. The Inter-

national Journal of Electrical Engineering & Education (2021), 00207209211013440.

Emanuel Todorov, Reza Shadmehr, and Emilio Bizzi. 1997. Augmented feedback

presented in a virtual environment accelerates learning of a difficult motor task.

Journal of motor behavior 29, 2 (1997), 147-158.

Dishita G Turakhia, Yini Qi, Lotta-Gili Blumberg, Andrew Wong, and Stefanie

Mueller. 2021. Can Physical Tools that Adapt their Shape based on a Learner’s

Performance Help in Motor Skill Training?. In Proceedings of the Fifteenth Inter-

national Conference on Tangible, Embedded, and Embodied Interaction. 1-12.

[45

[46

[49

[50

w
&,

[53

[55

[57

[61

[63

[64

Turakhia. et al.

[65] Dishita G Turakhia, Andrew Wong, Yini Qi, Lotta-Gili Blumberg, Yoonji Kim,

and Stefanie Mueller. 2021. Adapt2Learn: A Toolkit for Configuring the Learning
Algorithm for Adaptive Physical Tools for Motor-Skill Learning. In Designing
Interactive Systems Conference 2021. 1301-1312.

[66] Jaakko Vuorio. 2024. Studying the Use of Virtual Reality Learning Environ-

ments to Engage School Children in Safe Cycling Education. Simulation &
Gaming 55, 3 (2024), 418-441.  https://doi.org/10.1177/10468781241246566
arXiv:https://doi.org/10.1177/10468781241246566

Frederik Wiehr, Felix Kosmalla, Florian Daiber, and Antonio Kriiger. 2016. be-
taCube: Enhancing training for climbing by a self-calibrating camera-projection
unit. In Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems. 1998-2004.

Gabriele Wulf, Charles Shea, and Rebecca Lewthwaite. 2010. Motor skill learning
and performance: a review of influential factors. Journal of Medical education 44,
1(2010), 75-84. https://doi.org/10.1111/j.1365-2923.2009.03421.x

Junichi Yamaoka and Yasuaki Kakehi. 2013. dePENd: augmented handwriting
system using ferromagnetism of a ballpoint pen. In Proceedings of the 26th annual
ACM symposium on User interface software and technology (UIST’13). 203-210.
https://doi.org/10.1145/2501988.2502017


https://doi.org/10.1037/0033-295X.108.1.57
https://doi.org/10.1145/2901790.2901797
https://doi.org/10.1037/0033-2909.95.3.355
https://doi.org/10.1037/H0076770
https://doi.org/10.1016/j.neuroscience.2017.07.048
https://doi.org/10.1177/10468781241246566
https://arxiv.org/abs/https://doi.org/10.1177/10468781241246566
https://doi.org/10.1111/j.1365-2923.2009.03421.x
https://doi.org/10.1145/2501988.2502017

	Abstract
	1 Introduction
	2 Related Work
	2.1 Adaptive Motor Skill Learning
	2.2 Adaptive Training Systems for Motor Skills
	2.3 Augmented Reality Tools for Motor Skills
	2.4 Design Opportunities in Augmented Reality

	3 Exploratory User Study
	3.1 Study Goals:
	3.2 Participants:
	3.3 Learning Task:
	3.4 Adaptive Task Difficulty Algorithm
	3.5 Study Environment and Apparatus
	3.6 Procedure and Study Design

	4 Results
	4.1 Learning Gains
	4.2 Learning Experience
	4.3 Design Insights for AR Adaptive Training

	5 Discussion
	5.1 Current Opportunities - Adapting Simple AR Overlays
	5.2 Near Future Opportunities - Adapting Multimodal Cues and Realism
	5.3 Future Opportunities - Adapting Perception:

	6 Limitations and Future Work
	7 Conclusion
	Acknowledgments
	References

