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Expert interaction techniques enable users to greatly improve their performance; however, to realize these

advantages, the user must first acquire the skill necessary to use a technique, then choose to use it over

competing novice techniques. This article investigates several factors that may influence whether use of

an expert technique persists when the context of use changes. Two studies examine the effect of changing

performance requirements, and find that a high performance requirement imposed in a training context can

effectively push users to adopt an expert technique, and that use of the technique is maintained when the

requirement is subsequently reduced or removed. In a final study, performance requirement, high-level task,

and environment of use are changed—participants played a training game to learn the menu for a drawing

application, which they then used to complete a series of drawings over the following week. Participants

exhibited a somewhat surprising “all-or-nothing” effect, using the expert technique nearly exclusively or not

at all, and maintaining this behavior over a range of qualitatively different tasks. This suggests that switching

to an expert technique involves a global change by the user, rather than an incremental change as suggested

by previous work.
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1 INTRODUCTION

Expert interaction techniques, such as keyboard shortcuts, gestures, and command languages
allow users of interactive systems to greatly improve their performance by substituting fast,
memory-based interactions for slower interactions based on visual search and direct manipulation
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(Malacria et al. 2013a; Lane et al. 2005; Odell et al. 2004). However, a key challenge for these tech-
niques is that they require an initial investment of time and effort to acquire the memory and skill
necessary to use them, and this can act as a barrier to their adoption (Lane et al. 2005; Scarr et al.
2011), particularly when the expert technique exists alongside novice techniques (i.e., the user
can choose to use either the novice or the expert method to perform a given action). To address
this challenge, training systems have been developed that teach expert interaction techniques, and
allow users to practice them to develop the required memory and skill. Previous research has ex-
plored the use of games as a way to teach touch gestures (Cockburn et al. 2007b; Kristensson and
Zhai 2007), and a number of commercial products exist to help people learn expert techniques. For
example, ShortcutFoo1 provides flashcard-style training in keyboard shortcuts and commands for
a variety of applications, including Visual Studio, Excel, and Photoshop, and VIM Adventures2 pro-
vides a game in which players navigate and complete challenges in a game world using keyboard
shortcuts and commands for the VIM editor.

While a number of training systems have been proposed, little is known about how well training
in expert interaction techniques actually works—that is, whether practicing expert interaction
techniques in a training context will translate into increased use in a real-world setting, displacing
novice techniques. Although a great deal of research has been carried out to examine general
transfer of learning (i.e., the degree to which knowledge and skills learned in one context are used
in another context), few studies have looked specifically at transfer when the training involves an
expert technique that is intended to supersede a novice technique that the user already knows.
We call this particular type of transfer post-training persistence—that is, whether use of a learned
technique persists when the user leaves the training setting, and has the option of using alternative
techniques.

Improving the persistence of expert interaction techniques would lead to increased use of these
superior methods, improving the overall level of performance with interactive systems. However,
the post-training persistence of expert interaction techniques has not been widely studied, and we
know little about the factors that influence whether or not a user will maintain use of an expert
interaction technique when the context of use changes. Investigating these questions is the main
focus of this article.

It may seem odd that a user who has learned a faster expert technique would ever revert to using
a slower novice method. However, after reviewing the literature on learning transfer, we identified
several factors that may prevent an expert technique from persisting. These include differences
in performance requirement between the training task and real use; technique-task compatibility
(the degree to which tasks in the usage context are able to exploit the expert technique); and risk
aversion (the willingness of the user to make errors in the training versus the usage context).

Performance requirement. Tasks used in training may have different performance requirements
than the tasks carried out in everyday use. For example, to encourage practice of the expert tech-
nique, a training system may use a demanding task that necessitates the use of the faster expert
method. If this level of performance is not required in the real-world usage setting, the user may
feel no pressure to continue using the expert technique. For instance, in a previous work by Gutwin
et al., participants quickly adopted an expert selection method while playing a training game, but
another set of participants showed little uptake of the same expert method over 10 weeks of using
a drawing application, which may suggest that a high performance requirement is a key driver of
use of the expert method (Gutwin et al. 2015).

1https://www.shortcutfoo.com.
2http://www.vim-adventures.com.
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Fig. 1. Two-step selection in a FastTap menu. The user touches the menu button (a), after a short delay the

menu items are displayed (b), and the user selects the desired item (c).

Technique-task compatibility. Second, the training context may be particularly well-suited to
performing the expert technique, while the usage context may not. Previous work on touch-typing
has demonstrated that training using non-words or random sequences of letters gives a relative
advantage to touch-typing—possibly because this nonsense text is difficult to remember, forcing
people to spend more time looking at the screen and less time looking at their hands and the
keyboard. This artificial characteristic of the training environment can improve adoption of the
expert technique, but in real-world usage with text that is easily held in the user’s memory, it
becomes easier to revert to “hunt-and-peck” typing (Yechiam et al. 2003).

Risk aversion. Third, differences in the consequences of errors and a user’s willingness to make
mistakes may affect the persistence of an expert technique. For example, a user may be willing to
guess at memory-based shortcuts in a training game, but not during a work task.

It is important to establish the conditions under which use of expert interaction techniques
persists, because this information can guide the design of training systems. In particular, there
are advantages to training in a different context than that in which a technique will be used. For
example, a tutorial can use representative tasks that allow the learner to focus on understanding
the technique, and a training game can employ techniques to promote rapid learning (such as
optimizing rehearsal intervals (Zhai et al. 2002; Zhai and Kristensson 2003), increasing mental
effort (Cockburn et al. 2007a), or encouraging use of an expert technique by imposing a high
performance requirement (Gutwin et al. 2015)). Moreover, these goals can be achieved without
the risk of the user making errors on an important document. Finally, the alternative—that people
will simply learn the expert method through continued use of the software—has been shown to be
generally less successful than dedicated training (Gutwin et al. 2015).

To investigate some of the factors affecting the post-training persistence of expert techniques,
we carried out three studies using FastTap menus (Gutwin et al. 2014), a type of spatial menu
system that supports both a novice method and an expert selection method. In the novice (two-
step) selection method, the user first touches a menu button with their thumb (Figure 1(a)). After
a short delay (∼250ms) the items in the menu are displayed (Figure 1(b)), and the user can then
select the desired item with another finger (Figure 1(c)). In the expert (one-step) selection method,
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Fig. 2. One-step selection in a FastTap menu. The user taps the menu button and the location of the desired

item together (b), without waiting for the menu to be displayed.

the user taps the menu button and the location of the desired item together (Figure 2(b)), without
waiting for the menu to appear.

FastTap menus are an ideal technique for studying post-training persistence because their two
selection modes epitomize the difference between novice and expert interaction techniques—two-
step selection is a closed-loop action involving visual search, whereas one-step selection is a sig-
nificantly faster open-loop action based on memory of hand postures and spatial locations.

In each of our three studies, we first trained people on both the novice and expert methods of
selecting commands in an application, and then changed aspects of the context to see whether the
change would affect use of the expert method. The first two studies examined the effect of changing
the performance requirement of the user’s task—that is, the degree to which people need to use the
faster expert method in order to successfully complete their task. We created a game in which the
player had to select commands (see Figure 3 in Section 4), and as the game progressed they had to
make their selections more and more quickly. This high performance requirement pushed people
to switch to the expert technique (to take advantage of its greater performance). Once they had
learned the expert method, we reduced the performance requirement (in Study 1) or removed it
altogether (in Study 2), to see whether people would continue using the expert technique.

The main result from these studies was that reducing or removing the performance requirement
did not reduce the use of the expert technique—that is, use of the expert selection method was
maintained even after the need to make fast selections was removed. Even when we reduced the
speed of the game to zero—meaning that participants could take as much time as they wanted to
make a selection—more than 97% of selections were still made using the expert technique. This is
an important result because performance requirement is a factor that can be easily manipulated in
a training context, but is largely out of the control of an application designer in a usage context.

The third study tested a more drastic change in context. Specifically, we changed the performance
requirement, high-level task, and the environment of use. As in the previous studies, we trained
participants using a game, but this time they learned a menu of drawing tools taken from a touch-
based drawing application that we had also developed. We then installed the drawing application
on participants’ personal smartphones, and sent them a series of drawing tasks to complete over
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the next 7 days. The drawings were done in the participants’ everyday environments, with minimal
experimental control imposed on how the tasks were completed. We logged all use of the interface
in order to determine whether participants continued using the expert technique—even in a very
different usage setting, with a different application and completely different tasks, and no intrinsic
requirement that participants make fast selections.

Given the number of changes made between the training and usage environments, and the lim-
ited overall success of transfer that is shown in previous work (e.g. (Gist et al. 1990; Anderson
and Bischof 2013)), we did not expect that the expert selection technique would completely per-
sist. We expected that people would only partially maintain their use of the expert technique—for
example, for commands that were frequently used—and that we might observe decay in use of
the techniques over the week of tasks. However, our findings were counter to these expectations.
For five of the ten participants, the expert technique was used nearly 100% of the time for the
drawing tasks, with essentially no reduction over the 7 days, and across a range of qualitatively
different types of drawing tasks (novel, repeated, requiring creativity, etc.). For another four of the
ten participants, the expert technique did not persist at all—they returned to the novice technique,
and used two-step selection almost exclusively for the drawing tasks. Only one participant used a
mixture of the novice and expert methods, and a post-study interview revealed that this was the
result of a deliberate choice on his part after thinking about the relative advantages of the two
selection methods.

This “all or nothing persistence” phenomenon has not been observed before, and suggests that
some expert techniques require a global change on the part of the user, rather than being grad-
ual (for example, as suggested by Kurtenbach’s rehearsal hypothesis (1993)). We discuss several
potential explanations for these results, including simple individual differences in users’ interest
in using expert methods (the fact that someone has learned an expert method does not mean that
they have an interest in using it), and the possibility that users are more affected by potential neg-
atives of a new technique than they are by the potential positives (i.e., a negativity bias (Quinn
2016; Kahneman 2013)).

Overall, our results provide valuable new insights into the post-training persistence of expert
techniques, and demonstrate that there is considerable complexity in this phenomenon. It is clear
that more work needs to be carried out to confirm and expand on these studies, but our work nev-
ertheless provides several important contributions. First, we identify post-training persistence as
a unique issue in systems with competing novice and expert techniques, and identify key contex-
tual factors that could impact persistence when moving from a training context to a usage context.
Second, we show that changing the performance requirement alone does not appear to reduce the
use of an expert method (when the application and environment are held constant). Third, we
show that games can be an effective training context for memory-based expert techniques—in
less than 20 minutes of gameplay, most participants learned the expert technique for a 12-item
spatial menu. Finally, we show that expert technique use learned in a game can persist across
large contextual changes (to the task, application, environment, and performance requirement)—
although more work is needed to determine why transfer occurred for some participants but not for
others.

2 BACKGROUND AND RELATED WORK

We begin with a review of related work on expert interaction techniques, approaches that have
been explored to support the transition from novice to expert performance in interactive systems,
and general work on training and skill development. We then present the concept of post-training
persistence, contextualized within this body of existing work.

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 29. Publication date: August 2017.
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2.1 Expert Interaction Techniques

User interfaces often provide more than one mechanism for performing a given action. A common
scheme is to provide both novice interaction techniques that can be easily performed with little or no
training (e.g., hierarchical menus), and expert interaction techniques that require up-front training
to perform, but which enable higher performance by taking advantage of the richness and power
of human perception, memory, cognition, and motor actions (e.g., keyboard shortcuts).3

A common characteristic of novice interaction techniques is that they are operated in a closed-
loop fashion, where sensory information and feedback are used to adjust actions as they are carried
out. For example, in a hierarchical menu, the user will perform a visual search for the desired item.
Even if the user has an idea of the position of the item, the visual feedback provided by the menu
will be used during target acquisition, and selection time will be some function of the number of
items present (Cockburn et al. 2007a). The visual guidance provided by these techniques makes
them easy to learn and use, and likely explains their near ubiquity. However, these benefits come
at a cost in terms of performance—the richness and power of human perception, cognition, and
motor action are constrained by the closed-loop nature of these techniques.

In contrast, expert interaction techniques are often memory-based and include open-loop ac-
tions. For example, once a user has learned that Ctrl+C is the keyboard shortcut for Copy, and
has practiced executing this shortcut on the keyboard sufficiently, the command can be performed
rapidly and without attending to visual feedback. This enables expert techniques to achieve signif-
icantly higher performance as compared to their novice counterparts (Malacria et al. 2013a; Lane
et al. 2005; Odell et al. 2004; Card et al. 1983).

A range of expert interaction techniques have been developed and studied. Keyboard shortcuts
are a consistent feature of GUIs and their performance benefits are well established (Lane et al.
2005; Card et al. 1983). Gestures and marks, performed with pen, mouse, or touch input, have also
been explored as rapid command invocation techniques (Kurtenbach and Buxton 1991; Appert and
Zhai 2009), and some evidence suggests that gestures can be easier to learn than keyboard shortcuts
(Appert and Zhai 2009). Command languages, most commonly used in command-line interfaces
and quick application launchers (e.g., Quicksilver,4 Apple Spotlight), have also been explored as
additions to GUI applications (Hendy et al. 2010; Scarr et al. 2011). More recently, spatially stable
menus have been investigated as a way to enable faster interaction with interactive systems (Scarr
et al. 2012), and as an expert interaction technique for multi-touch devices (Gutwin et al. 2014,
2015).

Though a range of different expert interaction techniques exist, and the learning characteristics
of some of them have been studied, there has been little work investigating the transfer of these
techniques from a training context to a usage context (i.e., their post-training persistence). In this
work, we examine these issues through spatially stable menu systems such as FastTap. While these
menus are not as common as keyboard shortcuts, they have several advantages for a first exami-
nation of the issues surrounding post-training persistence, as discussed in Section 1. In addition,
because this type of menu is not widespread, participants in our studies are less likely to have
pre-conceptions on the merits of particular techniques (in contrast, there are many people who
are strong advocates of command-line tools or keyboard shortcuts).

3Note that “novice” and “expert” here do not refer to the general level of experience possessed by the user—a novice user

of an application may still use keyboard shortcuts, while an expert user may still use hierarchical menus. Instead, these

terms refer to the fact that expert techniques require some expertise to be used effectively, while novice techniques do not.
4http://qsapp.com/.
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2.1.1 Barriers to Adoption. It is well established that users tend to plateau at mediocre per-
formance with interactive systems (Carroll and Rosson 1987; Fu and Gray 2004; Gray et al. 2006;
Bhavnani and John 2000; Lane et al. 2005; Gray and Lindstedt 2016), and a number of the proposed
explanations for this phenomenon provide insights into barriers to adoption of expert interaction
techniques as well.

The “paradox of the active user,” a phrase coined by Carroll and Rosson (1987), refers to a hesi-
tance among users to take time away from a current task to learn new or improved ways of doing
things, even if time could be saved through an initial period spent learning. This suggests that one
barrier to adoption of expert techniques is the initial learning they require. Fu and Gray (2004)
built on Carroll and Rosson’s work, and found that people prefer to maintain procedures that are
well-practiced, generally applicable, and that provide fast, incremental feedback. Since expert in-
teraction techniques achieve high performance by reducing or removing the need to attend to
feedback, this preference by users may also explain the hesitance to use these techniques. Con-
versely, this preference may also explain why the expert techniques that are frequently used tend
to be those that are generally applicable (e.g., Ctrl+C, Ctrl+X, and Ctrl+V for Copy, Cut, and
Paste, respectively, which are supported in many applications).

Scarr et al. (2011) examined issues of transitioning to expertise in user interfaces, and devel-
oped a framework that characterizes expertise development in terms of intramodal development
with a particular interaction technique, and intermodal development (i.e., switching from one tech-
nique to another). Critically, this framework suggests that people will suffer a performance dip
when switching to a new modality, even if that modality offers an ultimately higher performance
ceiling, due to the time spent familiarizing themselves with the new technique. This dip is im-
portant, because it may deter switching to the expert technique because continuing to use the
novice technique will be faster for any one action (a phenomenon referred to as “local optimality”
(Gray et al. 2006)), and the dip may cause the user to form a negative impression of the expert
technique.

Recent work suggests that a barrier to expert adoption exists even for rehearsal-based tech-
niques where the novice and expert interaction techniques share the same physical actions (e.g.,
Marking Menus and FastTap menus). Though rehearsal-based interaction can take advantage of
incidental learning to ease transitions from a novice to an expert technique, work by Gutwin et al.
(2015) suggests that there is still a barrier at the switching point.

Complementary to the work just discussed, Gray and Lindstedt (2016) have proposed a frame-
work for understanding how individuals discover and invent new methods of skilled performance,
by examining dips, plateaus, and leaps in their performance over time. They distinguish between
performance “plateaus,” in which an individual’s performance is stable, but could be improved
with better methods, and performance “asymptote,” in which the current method is optimal for
the given task in the given environment. They also suggest that performance dips can be used as
a behavioral signal of periods of experimentation, discovery, and trial and error.

Taken together, the previous work suggests that training tools are important for encouraging
the adoption of expert techniques. If training can be designed such that an expert technique does
exhibit post-training persistence, then training can be performed separate from the user’s pri-
mary task, sidestepping the paradox of the active user and minimize or negating the performance
dip when switching between techniques. In this article, we establish a theoretical and empirical
grounding for this type of dedicated training, by investigating the post-training persistence of
expert interaction techniques.

2.1.2 Techniques to Support Adoption. Existing research on supporting the adoption of expert
interaction techniques has primarily focused on in situ training techniques that operate within the

ACM Transactions on Computer-Human Interaction, Vol. 24, No. 4, Article 29. Publication date: August 2017.
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usage context. These techniques variously promote awareness of expert methods, motivate their
use, or try to create a more natural path from novice to expert usage.

Grossman et al. (2007) proposed a variety of schemes to assist learning of keyboard shortcuts
within an application, including using visual and audio feedback when a command is invoked to
expose the user to its shortcut; deterring use of the GUI by making the system unresponsive for 2
seconds after each menu selection; and forcing shortcut use after each menu selection. An exper-
iment showed that forced use and audio feedback were effective at encouraging shortcut use, and
that subjective responses were not adversely affected. Along similar lines, HotKeyCoach (Krisler
and Alterman 2008) displays a dialog box when an item is selected with the mouse, requiring either
a click to dismiss the dialog, or for the user to perform the keyboard shortcut before proceeding,
which was shown to be effective in increasing keyboard shortcut knowledge. Though experiments
have shown that these methods are successful, forced use and audio feedback may be unacceptable
to users in real-world usage situations.

Subtler techniques have also been proposed to promote learning of keyboard shortcuts and com-
mand languages in an application. The Blur system (Scarr et al. 2011) uses “calm notifications”—
transparent windows that are temporarily displayed on the corner of the screen—to display com-
mand line alternatives to actions performed in the GUI. Commercial products KeyRocket5 and
EVE6 provide similar functionality for keyboard shortcuts, displaying a notification with the short-
cut for each action the user performs.

To encourage users to improve their efficiency, Malacria et al. (2013b) proposed Skillometers—a
dedicated widget that displays information about the user’s performance during interaction, as
well as an estimate of time savings that could be achieved through use of expert techniques. A
comparative evaluation on a simple task suggests that this approach can increase shortcut use.

Finally, expert interaction techniques have been developed with novice-to-expert transitions
in mind. Kurtenbach developed Marking Menus based on three design principles: self-revelation,
guidance, and rehearsal (Kurtenbach 1993; Kurtenbach and Buxton 1994). In these menus, the
physical actions for making an expert selection are a sped-up version of the visually guided ac-
tions of making a novice selection. The intention is to create a more natural transition from the
novice to the expert selection method, because novice selection is a rehearsal of expert selection.
More recently, FastTap menus have been developed as a touch-screen interaction technique based
on the same design principles (Gutwin et al. 2014). While these techniques have been shown to
ease learning of expert techniques, recent work has suggested that there remains a barrier at the
switching point between the novice and expert methods (Gutwin et al. 2015). This suggests that
some level of intentional learning and practice is required even for interaction techniques designed
to promote a natural transition to expert use.

Though a range of in-situ training techniques have been explored, we are unaware of work that
has examined the persistence of expert techniques after training is finished. This is important be-
cause a number of the in-situ training techniques that have been explored may not be acceptable
to users in real-world usage scenarios (e.g., audio feedback, UI delays, or forced use of shortcuts).
As well, work in the psychology literature has shown that guidance, in the form of feedback pro-
vided during an action, can become relied upon, degrading retention and performance when the
guidance is removed (Schmidt 1991). In this article, we conduct an investigation into the factors
that influence whether use of a technique persists once guidance is removed, and our findings have
the potential to inform the design of in-situ training techniques.

5https://www.veodin.com/keyrocket/.
6http://www.hotkey-eve.com/.
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More generally, there has been little research on dedicated (i.e., outside the application) train-
ing for expert interaction techniques. In the commercial space, ShortcutFoo7 provides dedicated
training in keyboard shortcuts and commands in a wide range of applications, including Visual
Studio, Excel, and Photoshop; and VIM Adventures8 provides training for keyboard shortcuts and
commands for the VIM editor. These systems variously use games, competition, challenges, and
interval training to help users learn expert interaction techniques. However, the effectiveness of
these approaches has not been well established. In this article, we investigate specific factors that
can affect whether dedicated training on expert interaction techniques will transfer to use of those
techniques in subsequent usage contexts. As a basis for our exploration, the next section reviews
the existing body of work on training and skill development from the psychology and motor learn-
ing literature.

2.2 Training, Transfer, and Retention

A great deal of research has been carried out over many decades on learning and training (e.g.,
see Schwartz et al. (2001) for a general review). In situations where training occurs outside of the
everyday use of learned skills and knowledge (for example, classroom training to teach new skills
for a job), the value of a training scheme involves more than just the amount of learning that
occurs during training itself. As a result, researchers have also considered the concepts of transfer
and retention as important parts of the overall success of training. Transfer is the degree to which
trainees apply the knowledge or skill acquired in a training context to another setting (such as
a real-world job) (Baldwin and Ford 1988), and retention is the length of time that knowledge or
skills are remembered or used after training has ended (Wang 2009). Our particular concern in
this article is with transfer, although issues in both training design and retention are relevant at
several points.

Many researchers have observed that transfer is a difficult problem, and that typically only a
low percentage of knowledge and skills is ever translated back to the transfer context (i.e., the
setting where the skills and knowledge are to be applied) (Gist et al. 1990). As stated by Ford
and Weissbein (1997), “the ‘transfer problem’ in organizational training [is] that much of what is
trained fails to be applied in the work setting” (p. 22). Researchers in motor learning have also
noted that achieving good performance in the training environment is not enough to guarantee
transfer—as stated by Anderson and Bischof (2013), “While it is commonly believed that increased
performance on practice trials is indicative of learning, [this is] only evident through retention
and transfer tests” (p. 1110).

There are several factors that can affect the success and failure of transfer, and these can be
generally grouped into four categories: the design of the training program, the characteristics of
the transfer setting, the characteristics of the trainee, and the characteristics of the learned skill.
Here, we review several factors in these categories that are specifically relevant to the transfer of
expert interaction techniques.

2.2.1 Design of the Training Program. There are many different ways of training people in a
new skill; although a full review of training approaches is outside the scope of our work (see
Compeau et al. (1995), Schmidt and Lee (2011), or Salas and Cannon-Bowers (2001) for surveys),
there are several aspects of the way a training program is designed that have been shown to affect
both transfer and retention.

7https://www.shortcutfoo.com
8http://www.vim-adventures.com
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Similarity of training and transfer settings. Several prior results in psychology suggest that re-
trieval is easier when the transfer setting is similar to the conditions under which the skill or
knowledge was first learned (e.g., Tulving and Thompson’s (1973) encoding specificity principle,
and Woodworth and Thorndike’s (1901) identical-elements theory). Researchers have investigated
how similarity of cues and stimuli affect retrieval (e.g, (Arthur et al. 1998; Baldwin and Ford 1988)),
and the effect of different procedures in which those cues appear (Machin 2002). We build on this
past work, identifying specific differences between training and usage contexts that may affect
the post-training persistence of expert interaction techniques (Section 3.1), and then test several
of these in three studies.

Stimulus variability and underlying principles. If the transfer setting provides a variety of sit-
uations in which the new skill is applicable, transfer can be improved if training uses a range
of stimuli representative of these situations (Gist et al. 1990). Similarly, if there is a general rule
that governs the use of the skill or knowledge, it can be valuable to focus training on building an
understanding of these underlying principles (Rohrer et al. 2005).

Conditions of practice. Several studies have looked at the way in which the organization of the
training sessions affects learning rate, retention, and transfer. Researchers have considered the
distribution of practice (e.g., massed versus grouped practice trials, and the amount of time between
groups (Cepeda et al. 2006)), whether training involves whole or part concepts (Adams 1987), and
the type of feedback given (e.g., knowledge of performance versus knowledge of results (Gentile
1972)).

Part versus whole training. Research from the 1950s and 1960s investigated whether a complex
task could be broken down into parts that could be learned more efficiently than the task as a
whole, motivated by the desire to efficiently train people in a relatively difficult body of material
(e.g., training pilots to fly airplanes and execute missions). In general, researchers found that while
part-skill training does effectively transfer to performance of a whole task, whole-task training is
typically better, and when part skills must be time-shared with other activities in a final task, some
additional integrative whole-task practice is required (see overview in Adams (1987)).

Guidance. Providing guidance during training supports a learner (cognitively or physically) in
the execution of a skill (e.g., guiding the learner’s motions as they practice a golf swing). Guidance
can improve learning, but may also impair transfer: the guidance hypothesis (Schmidt 1991) sug-
gests that augmented feedback that improves early performance may impair performance once
the guidance is removed.

Effort and deliberation. Studies of memory have shown that retention can be improved if learn-
ers are deliberate in their practice (Ericsson et al. 1993), and if they need to work harder during
training. For example, Craik and Lockhart’s (1972) levels of processing framework suggest that
the strength of a memory is a function of the depth to which the stimulus is analyzed. In human-
computer interaction (HCI) research, this idea has been explored by Cockburn et al. (2007b), who
showed that spatial memory of an onscreen keyboard was improved when users could not see the
letters on the keys.

Overlearning. When a training program uses overlearning, it asks learners to continue prac-
ticing even after they have demonstrated initial mastery of a skill (e.g., past their first error-free
trial) (Ebbinghaus 1913; Driskell et al. 1992). The intention of overlearning is to develop automatic-
ity of the skill, and studies show that overlearning can substantially improve retention (Driskell
et al. 1992) (although after longer time periods the positive effects of overlearning may be reduced
(Rohrer et al. 2005)).

2.2.2 Factors in the Transfer Setting. Prior research has also identified several characteristics of
the transfer setting that can substantially affect transfer (e.g, (Baldwin and Ford 1988; Ford and
Weissbein 1997; Vosburg 2000)).
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Need for the new skill. If a learned skill is not needed for the successful completion of a job
or task, it is less likely to be transferred. Although most previous research assumes that training
provides valuable content, several researchers indicate the importance of a needs assessment at
the start of the training process (e.g, (Rouiller and Goldstein 1993)). This characteristic is similar
to our idea of “performance requirement” as described in Section 3.

Usage opportunity. Similar to the effects of need as described earlier, the number of opportunities
to use the learned skill can affect transfer. Researchers have found that increased opportunities to
apply learned skills in the work environment imply improved likelihood of retrieving those skills
(Baldwin and Ford 1988; Ford et al. 1992).

Time between training and use. Although time is typically used as a factor in retention studies, it
can also affect transfer. The general effect is the same in both cases—longer times between training
and use lead to reduced retention, and thus reduced transfer (e.g, (Ebbinghaus 1913; Driskell et al.
1992)), due to increased possibilities of memory interference and simple forgetting (Wang 2010).

Support from organizations and people. Several studies have shown the importance of a support-
ive work environment for transfer of training—for example, researchers have considered the effects
of supervisors’ attitudes toward the training (Wexley and Latham 2001), how a non-supportive or-
ganizational climate affects transfer (Broad and Newstrom 1992), and budgetary and scheduling
support (Peters and Waterman 1982).

Specific transfer support. A variety of post-training strategies for enhancing retention and trans-
fer have been investigated, including programs to set transfer goals, monitoring of skill per-
formance, and specific “relapse-prevention” techniques (Wexley and Baldwin 1986; Foxon 1993;
Machin 2002).

2.2.3 Characteristics of the Trainee. Individual differences can also have a substantial effect on
transfer, although these can be much more difficult for a training system to assess or control.
Baldwin and Ford (1988) state that “trainee characteristics consist of ability or skill, motivation,
and personality factors” (p. 64). Of these, motivation appears to be the strongest factor affecting
transfer—for example, desire to succeed and belief in the value of the training have been shown to
lead to improved transfer of skills to job settings (Tubiana and Ben-Shakhar 1982; Baumgartel et al.
1984). Researchers have also studied techniques for increasing motivation, such as gamification
(McGonigal 2011; Landers and Armstrong 2017) or displays that show users how much better they
could perform with new skills (Bateman et al. 2012; Malacria Scarr et al. 2013).

A trainee’s post-training motivation can also affect transfer. In particular, choosing to use strate-
gies such as goal-setting or self-management once back in the work setting can lead to improved
transfer negotiation and supervision of skills (Wexley and Baldwin 1986; Gist et al. 1990).

2.2.4 Characteristics of the Learned Skill. There are many different kinds of skill that can be
taught by a training program—for example, typical training programs involve cognitive skills (e.g.,
memorization), physical skills (e.g., sports or psychomotor movements), and interpersonal skills
(e.g., negotiation). Although researchers have considered issues of transfer for all of these skill
types, a few studies have looked specifically at whether different skills transfer differently (Wang
2010). In addition, it is difficult to consider how certain factors could be controlled for some types of
tasks (e.g., overlearning is much easier to implement for a memory skill than for an interpersonal
skill) (Baldwin and Ford 1988).

One specific task characteristic that has been tested is the complexity of the learned skill. A meta-
analysis by Wang (2010) showed better transfer for tasks of higher complexity, possibly because
the added complexity leads to deeper processing. An exception was found in situations where the
higher complexity involved multiple ways to carry out the task. This added variability actually led
to reduced transfer.
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2.2.5 Skills Transfer in Human-Computer Interaction. In addition to the work reviewed earlier,
the HCI literature contains a number of studies on skills transfer for specific input techniques—
see Cockburn et al. (2014) for a recent review of interaction techniques designed to support novice
to expert transitions. For example, touch typing skill with QWERTY-layout keyboards has been
shown to transfer to a number of variant keyboard designs (Green et al. 2004; Isokoski and Raisamo
2000; Matias et al. 1996), and gesture skills learned with one hand have been shown to transfer
to the other hand (Annett and Bischof 2013). Finally, reuse of gestures and chunking has been
recommended as a means of reducing cognitive load and improving learnability in gesture-based
systems (Buxton 1995; Shen et al. 2006; Wu et al. 2006).

There has been relatively little research on skill transfer for expert interaction techniques specif-
ically, with the exception of some work on touch typing. Touch typing can be considered to be a
memory-based expert interaction technique that exists alongside an alternative novice technique
(i.e., visually guided or “hunt and peck” typing). Yechiam et al. (2003) studied the phenomenon of
people undergoing training in how to touch type, and then reverting to visually guided (novice)
typing in everyday use. They theorized that this failure of transfer was due to a particular dif-
ference between the training and usage contexts, combined with a tendency to allocate behav-
ior based on what produces better immediate performance (a phenomenon called “melioration”
(Herrnstein et al. 1993)). Specifically, touch typing training is often based on typing non-words
or random sequences of letters without a semantic structure, which makes visually guided typ-
ing more difficult by forcing the user to frequently alternate between looking at the monitor and
the keyboard, and also makes it more difficult to reacquire a position in the text. Thus, visually
guided (novice) typing is at a disadvantage during training, but advantaged during everyday use.
The authors argued that because of this difference, touch typing trainees can reach a point where
touch typing is more efficient than visually guided typing during training, but less efficient during
everyday use (in the terminology of this article, the expert technique does not persist, because of
the differences between the training and usage contexts).

2.2.6 Models and Frameworks of Skill Acquisition. Several researchers have also sought to iden-
tify and formalize the principles that underlie learning and skill acquisition, and these frameworks
can have explanatory power for the issues of expertise and transfer that we consider here. In the
following text, we present an overview of several frameworks.

Phases of skill acquisition. Fitts and Posner (1967) stated that learning progresses in three dis-
tinct stages. The “cognitive” stage is the earliest, and is characterized by the initial development
of strategies and understanding of the task. In the “associative” stage, learners refine their per-
formance based on feedback, and build associations between specific stimuli and appropriate re-
sponses. The associative phase is where people move from focusing on what is done in the task,
to how it is done, and can last for a long time. Finally, the “autonomous” stage is characterized
by task elements becoming automatic and less subject to cognitive control. Although Fitts and
Posner did not explicitly discuss transfer, it is reasonable to expect that transfer to new con-
texts becomes more likely at later stages (i.e., in the advanced associative stage or autonomous
stage).

Strategy selection and microstrategies. Another early view of skill acquisition suggests that prac-
tice and time allow people to make better decisions about which of the many available strategies
should be used to complete a task (Crossman 1959). This view focuses on the selection of strategies
rather than on strategy refinement. A more recent version of this theory that is particularly appli-
cable to interactive systems involves “microstrategies.” In this work, Gray and Boehm-Davis [2000]
observe that there are often several ways that a unit of interaction can be carried out through sim-
ple mouse and keyboard actions, and go on to show that people recognize small time differences
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between different strategies (as small as 150ms), and choose more efficient strategies when tasks
are stable. The idea of strategy selection suggests that users’ choices about how to complete a
task are not simply based on the frequency of different past experiences, but that people are also
sensitive to the efficiency of different methods.

Cognitive architectures. Several theories of learning and skill development are based on the
idea that cognition can be modeled by production rules; two of the best-developed frameworks
are the ACT-R architecture (e.g, (Anderson 1983)) and the SOAR framework (e.g. (Newell 1990)).
These models have been used to describe and explain many elements of learning, with consider-
able success. Transfer of training has been explored using ACT-R (Singley and Anderson 1989)—
researchers suggest that the similarity between the production rules in the two different contexts
determines the degree of transfer between those contexts (echoing Woodworth and Thorndike’s
early identical-elements theory (1901)).

The idea that increasing practice strengthens certain production rules can be used to explain
several aspects of learning (including the Fitts and Posner’s three stages of skill acquisition). How-
ever, some research has shown that real users do not behave in ways that are predicted by these
models. One set of studies by Fu and Gray (2004) is particularly relevant to our work—in this work,
Fu and Gray observe that plateaus in real-world performance (i.e., the paradox of the active user)
can be explained using cognitive-science frameworks. As described earlier, this work proposes that
users are not always focused on optimization, but instead sometimes follow patterns of behavior
that are “stable but suboptimal” because of local data (e.g., interactive feedback that reduces mental
workload).

There are thus several theories and frameworks that could be used to explain different elements
of skill transfer when a user learns a more-efficient technique for an interactive task such as com-
mand selection. The different theories, however, can present competing outcomes—for example,
the work on microstrategies suggests that people are highly sensitive to improving efficiency,
whereas Fu and Gray’s work suggests that people may fail to adopt more-efficient techniques
even when they are known. Later in the article, we return to the issue of how the different the-
ories can explain the results of our studies, but first we build on the existing body of work on
skill training, transfer, and retention, to look more closely at the issue of post-training persistence.
In the next section, we present a detailed definition of this concept, and identify key differences
between training and usage contexts for expert interaction techniques that we believe will affect
their post-training persistence.

3 THE POST-TRAINING PERSISTENCE OF EXPERT INTERACTION TECHNIQUES

We define the post-training persistence of an expert interaction technique as the degree to which,
once acquired in a training context, the technique transfers to a usage context and is used in prefer-
ence to novice interaction techniques capable of performing equivalent actions. As a special case of
skills transfer, many of the factors identified earlier in past work are likely to impact post-training
persistence as well (e.g., design of the training program, training and transfer settings, characteris-
tics of the trainee, etc.) While all of these are potentially interesting areas for study, in this article,
we focus on characteristics of the training and transfer contexts, and differences between these
contexts. This decision was pragmatic—we attempted to identify factors that would commonly dif-
fer between training and usage contexts for expert interaction techniques, and particularly those
that could be manipulated easily in training environments.

In the rest of this section, we discuss specific differences between training and usage contexts
that may influence the persistence of expert interaction techniques, and in the sections that follow,
we describe the studies we conducted to test some of these factors experimentally.
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3.1 Training and Usage Contexts

By considering past work on transfer, and a range of different potential training contexts for expert
interaction techniques (e.g., tutorials, flash cards, classroom instruction, and training games), we
identified seven key differences between training and usage contexts that are likely to affect the
post-training persistence of an expert technique.

3.1.1 Retrieval Triggers. To successfully perform an expert technique in a usage context, the
user must first think to use the technique, and then retrieve from memory the information required
to perform the technique (e.g., the specific keyboard shortcut for a command). Differences between
the training and usage contexts may make this difficult by removing triggers that helped with
retrieval in the training context. For example, consider a user that has learned keyboard shortcuts
for Microsoft Word using a flash-card game. During training, the user may be able to effectively
indicate Ctrl+B when presented with the word “Bold” written on a card, but it is not clear how
directly this will translate into use of the shortcut during regular use, where the “Bold” stimulus is
absent, replaced by an intention to make a current selection of text bold. This may prevent the user
from thinking to use the expert technique, or may make it more difficult to retrieve the relevant
shortcut.

3.1.2 Execution Actions. Once the user has retrieved the necessary information to use the ex-
pert technique, this information may need to be translated in some way before the technique can
be executed. For example, a user who has been verbally quizzed on the keyboard shortcuts for Pho-
toshop may be able to confidently state that “Ctrl+D” is the shortcut for the Deselect command,
but it may take extra effort for the user to translate this into the muscle movements to perform the
keyboard shortcut. As a more extreme example, memorizing the basic chord chart for a guitar is not
the same as being able to play the actual chords. This process of translation knowledge about how
to perform a new method into the cognitive, perceptual, and motor operations that constitute that
method—referred to as “method development” in past work (Gray and Lindstedt 2016)—may hurt
the persistence of a technique by imposing an additional cognitive cost to executing the necessary
actions in the usage context.

This difference between training and usage contexts is most relevant for systems that do not
give the learner a chance to practice the execution actions for an expert interaction technique
(e.g., learning keyboard shortcuts through a “Top Photoshop Keyboard Shortcuts” webpage).

3.1.3 Performance Requirement. A third potential difference between training and usage con-
texts is the performance requirement that each imposes on the user. In a training context, a high
performance requirement can be easily imposed with a timer, or a fast-paced game, and these
approaches have been shown to be effective in motivating users to quickly begin using an expert
interaction technique (Gutwin et al. 2015). In contrast, in a usage context, the performance require-
ment is largely out of the control of the application designers, and depends much more on the wider
context in which an application is used (e.g., if the user has a major deadline, or is casually typing
up a grocery list). Pragmatically, we would like an expert technique adopted in a training context
with a high performance requirement to persist when the performance requirement is removed in
a real-world usage context.

The effect of the performance requirement placed on the user is also important to study because
it is a particularly powerful technique—imposing a high performance requirement can all but force
the user to make use of the expert technique by rendering the novice technique insufficient to
meet the goals set in the training context (i.e., it can act as an implicit requirement that the user
use a particular technique). Given this power, it is particularly interesting to ask what happens
when this requirement is removed—will use of the expert technique established in a setting with
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a high performance requirement be maintained when the performance requirement drops below
the threshold where a novice technique could be used in its place?

With the aforementioned issues as motivation, we conducted two studies to test post-training
persistence in the face of changing performance requirements, and showed that participants do
maintain use of the expert technique, even when all need for performance is removed. Confirming
this transfer effect then set the stage for our third study, where we tested the effects of high-level
task factors (discussed later) in addition to a change in performance requirement.

3.1.4 High-Level Task. A particularly interesting question is whether differences in the high-
level tasks performed by the user in the training versus usage contexts will affect post-training
persistence, potentially by changing retrieval triggers or the effort required to execute actions. This
is important to understand because to some extent it is unavoidable for the high-level task to be
different in a training context versus a usage context—in the former the user is training, while in the
latter they are working on their real-world tasks. More generally, there is the question of whether
working on unfamiliar tasks, repeated tasks, or tasks requiring creativity will affect persistence.

There are a number of arguments for why differences in high-level tasks might inhibit post-
training persistence. First, the high-level task the user is performing may be an important retrieval
trigger. For example, without the prompts and cues provided by the training system, the user may
not think to use the expert technique. As well, during everyday usage, the user’s cognitive re-
sources may be consumed with additional considerations, such as planning the next action to be
performed in an interface, devising a strategy for creating a particular effect, or creative think-
ing about what to do next, and as a result retrieval triggers may be overlooked. These additional
cognitive costs could also hurt the user’s ability to translate what they have learned (e.g., the as-
sociation of the word “Copy” in a training game with “Ctrl+C”) into actions for executing the
expert technique (performing the keyboard shortcut).

The high-level task being performed during real-world usage could potentially affect the choice
of interaction technique in other ways as well. During a training game for learning keyboard short-
cuts, a user may be willing to guess at keyboard shortcuts for which they are not completely con-
fident, because there are a few negative consequences for an incorrect guess. In contrast, guessing
at a keyboard shortcut while working on an important document may not be deemed acceptable,
because it could cause delays or a loss of important work.

It is important to understand how differences in high-level tasks affect persistence, because for
training it is desirable to give the user a “safe” environment where they can try out a technique
and practice it without fear of losing important work. In our third study, we test whether different
types of higher-level tasks (e.g., repetitive, unfamiliar, and creative) affect the persistence of expert
selections using FastTap menus.

3.1.5 User Interface and Presence of Novice Techniques. Differences between the interfaces pre-
sented to the user in the training and usage contexts may also affect post-training persistence. For
example, differences in the interface could alter or remove retrieval triggers that were present in
the training context, preventing the user from thinking to use a technique. The interface in the
usage context could also contain additional methods of performing a given action that are not
present in the training context. For example, a training system for keyboard shortcuts is unlikely
to include a hierarchical menu alternative, which will be available in the usage context. This could
act as a barrier to persistence because the user will not be trained to choose the expert technique in
the presence of a novice alternative, and may simply revert to using the familiar novice technique
once they are in the usage context.

Differences in user interface could even have an effect when training is performed in situ
within an application’s interface, because removing the guidance or restrictions provided by these
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techniques may change retrieval triggers or affect the cost versus benefit of using an expert tech-
nique. For example, when techniques for encouraging expert interaction techniques such as the
explicit time penalties explored in Grossman et al. (2007) are removed, the user may revert to
novice techniques.

3.1.6 Extrinsic Motivators. Training and usage contexts may also differ in how they reward or
punish particular behaviors, and this could affect persistence. In particular, training contexts often
include elements that extrinsically motivate the user to adopt and use an expert technique by
rewarding its use (or punishing the user for not using it (Grossman et al. 2007)). Similarly, training
undertaken in a classroom or experimental setting may place an expectation on the user to adopt
and use the technique, whereas in the usage context, there may be no such extrinsic motivator. If
a user is only making use of a technique because of these external forces, then the technique may
not persist when moving to a usage context.

3.1.7 Physical Environment. Finally, differences in the physical environment or workspace in
which training and usage are undertaken could also influence post-training persistence. For exam-
ple, when undertaking training, the user may set up the environment specifically for performing
the expert technique—participants learning keyboard shortcuts may keep their hands on the home
row while training, even if they would typically have one hand on the mouse during regular use.
The physical environment could also be seen as changing available retrieval triggers and required
execution actions between the two contexts.

3.2 Summary

There are several factors related to the differences between a training context and a usage context
that can affect the post-training persistence of an expert technique. The studies presented in the
following sections how persistence is affected by some of these. In particular, we first conducted
two studies to test persistence when the task’s performance requirement changes. We then test
a scenario that is closer to real-world usage, in which performance requirement, high-level task,
physical environment, and extrinsic sources of motivation are all varied.

4 STUDY 1–REDUCING THE PERFORMANCE REQUIREMENT

We are interested in testing whether expert techniques persist across realistic differences between
the training and usage contexts, with the goal of creating dedicated training systems. As a first step,
we conducted two studies testing whether adoption of an expert technique learned under a high
performance requirement will be maintained when the performance requirement is reduced or
dropped entirely. As mentioned in the previous section, performance requirement is a particularly
important factor to consider because it can be easily manipulated in training, but is largely out of
the designer’s control in real-world usage. Specifically, our first study was designed to answer the
following research question:

Controlling for all other factors, is use of an expert technique (learned under a high performance
requirement) maintained when the performance requirement is reduced to the level where the expert
technique is no longer needed?

Answering this question is important because we want to show that use of the expert technique
is not simply a result of a high performance requirement at the moment when a technique must
be used. Past work has demonstrated that performance requirement is a particularly powerful
way to motivate users to adopt and use an expert interaction technique in a short period of
time, but it is unknown whether such use is maintained when performance requirements change
(Gutwin et al. 2015).
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Fig. 3. Trials for Study 1. In each trial, a colored circle falls from the top of the screen (a). The participant

selects the matching color (using one of the selection methods) (b), and then draws a slice gesture through

the circle (c).

In Study 1, participants played a “Shape Slicer” game (Figure 3) with a performance requirement
that changed over the course of the game. In a previous work (Gutwin et al. 2015), this type of
game was shown to allow participants to quickly adopt use of expert selection in FastTap menus.
However, the performance requirement only increased through the course of the game, so this
previous work provided no insights into what happens when the performance requirement drops.
As we will describe next, we modified the procedure from Gutwin et al. (2015) to add an additional
stage with very low performance requirements at the end of the game.

4.1 Tasks and Stimulus

In each trial, a circle of a randomly assigned color falls from the top of the screen (Figure 3(a)). The
participant’s goal is to select the matching color from a FastTap menu (Figure 3(b)), and draw a
slice gesture through the circle (Figure 3(c)). If the participant successfully slices the circle before it
exits the bottom of the screen, the trial is coded as a success, otherwise it is coded as failed. Either
way, the experiment proceeds to the next trial.

4.2 Study Design

In total, each participant experienced 288 trials, consisting of 24 blocks of 12 trials each. Each block
included one trial for each of the 12 items in the menu. The order of the 12 items was randomly
shuffled for each block, so the colors did not follow a predictable pattern from block to block.

The 24 blocks were arranged into three stages. In the first stage (blocks 0–3), circles fell at a
Slow rate (4.6 seconds on screen, 0.5 seconds between trials). This was followed by a second stage
(blocks 4–11) at a Medium rate (3.0 seconds on screen, 0.7 seconds between trials), and a third
stage (blocks 12–19) at a Fast rate (1.9 seconds on screen, 0.8 seconds between trials). In the final
stage (blocks 20–23), enemies fell at the Slow rate again. The final slow stage was intended to
test whether participants would maintain their use of one-step selection when the performance
requirement was reduced to a point where one-step selection was no longer required.

For each trial, we measured the time to select the matching color, and the participants’ inter-
actions with the FastTap menu, including the selection method used (novice two-step selection,
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or expert one-step selection). We also recorded selection errors (selecting an item other than the
matching color).

The method described earlier closely follows the game study used by Gutwin et al. (2015) in
terms of the nature of the game, the menu and items tested, and the speed of the first three stages
of the experiment. The main difference is the inclusion of a final slow stage, to test whether par-
ticipants would persist with using the expert technique, or return to using the novice technique.

4.3 Procedure

At the start of the study session, participants completed a consent form and a pre-study question-
naire that included demographic information. Next, the experimenter described the study task,
including the objective and mechanics of the game. The experimenter then explained and demon-
strated the two selection methods. These were intentionally presented in a neutral manner, identi-
fying them as “two-step selection” and “one-step selection,” respectively, to avoid suggesting that
one method was superior to another. Participants were told that the game will include different
stages, where the speed of the falling circles will change, and that they should try to be as quick
and accurate as possible. Following the experiment, each participant completed a post-study ques-
tionnaire. In total, the experiment took ∼30 minutes to complete, of which ∼18 minutes were spent
playing the game.

4.4 Participants and Recruitment

In this study, we were interested in how participants would perform in the final (Slow) stage of the
game after they had transitioned to using the one-step selection method. However, pilot studies
revealed that not all participants put equal effort into adopting the one-step selection method, even
though failing to do so makes it difficult to do well in the game. This lack of adoption may have
been aggravated because we intentionally did not instruct participants to use the one-step selection
method, to avoid biasing them toward using one selection mode over another. With the preceding
as motivation, we adopted a recruitment strategy in which we continued to recruit participants
until we had reached 12 participants who passed an exclusion criterion of at least 25% usage of
one-step selection in the Fast stage of the experiment.

In all, we recruited 14 right-handed participants from a university campus, of which 12 passed
our exclusion criteria (9 male, 3 female, ages 19–34 (mean 25, SD 5)). None of the participants
reported having a color vision deficiency. All participants were given a $10 honorarium for par-
ticipating.

4.5 Results

Figure 4 shows participants’ average use of one-step selection over the course of the four study
stages. Comparing the final Slow stage with the Fast stage preceding it, we can see that use of one-
step selection does not decrease in the final stage, and in fact continued to increase. The average
per-participant rate of one-step selection in the final Slow stage was 92.9%, as compared to 83.5%
in the final four blocks of the Fast stage. An RM-ANOVA did not show a significant main effect
(F1,11 = 4.2, p = 0.07, η2

G
= 0.06) between these two periods.

Examining each participant’s data individually, we found that only one participant used one-
step selection less frequently in the final stage than in the final four blocks of the preceding stage,
and only by a small amount (a decline from 100% to 97.5%). All other participants maintained or
increased their use of one-step selection in the final stage.

These results indicate that participants continued to use one-step selection, even after the per-
formance requirement was reduced. This provides evidence that the use of the expert technique
for FastTap was not just a transient effect of the high performance requirement.
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Fig. 4. Average per-participant use of one-step selection for Study 1, computed as the mean of per-participant

means. Error bars indicate standard error.

Fig. 5. Average per-participant trial completion times for Study 1, computed as the mean of per-participant

means. Error bars indicate standard error.

4.5.1 Time to Complete Trials. Figure 5 shows the average trial completion time, which we
define as the time taken to select the correct item during a trial. This metric is useful because it
gives an idea of how quickly participants were acting during the trials, independent of the selection
method they were using. We can see that, despite maintaining their use of one-step selection in
the final Slow stage, participants selected items at a more relaxed pace as compared to the Fast
stage preceding it.

The average per-participant trial time for the final Slow stage was 1959ms, as compared to
1486ms for the final four blocks of the Fast stage. An RM-ANOVA showed a significant main effect
for trial time between the Final Slow stage and the last four blocks of the Fast stage (F1,11 = 100.0,
p < 0.001, η2

G
= 0.75).

This result provides further confirmation that performance requirement is not inducing a tran-
sient use of the expert selection technique—participants took significantly more time to select
items, demonstrating an awareness that performance requirement had dropped, even while they
maintained or increased their use of one-step selection.
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Fig. 6. Average error rates for Study 1, computed as the mean of per-participant means. Error bars indicate

standard error.

4.5.2 Error Rate. Finally, we examined the average error rates across the study blocks (Figure 6).
We see that the highest error rate was during the Fast stage, with the error rate dropping during
the final Slow stage.

The lower error rate in the final Slow stage, coupled with the longer trial completion time mea-
sure, discussed earlier, suggests that participants were able to take advantage of the lower per-
formance requirement in the final Slow stage to perform the one-step selection more carefully,
perhaps taking more time to recall each item’s location, or targeting their selection more carefully.
However, the mean error rates in the final Slow stage of greater than 15% suggest that participants
were still in the process of learning the one-step selection method.

4.6 Discussion

The findings from our first study suggest that expert interaction techniques can persist and con-
tinue to be used when performance requirement drops. This is significant when considering the
alternative—what if we had observed that participants did not maintain use of the expert tech-
nique when performance requirement dropped? If this were the case, it would suggest that a high
performance requirement must be maintained in order for use of the expert technique to continue,
which would be discouraging for dedicated training systems. As it stands, our findings suggest that
performance requirement can effectively be used to motivate a user to acquire the necessary skill
to use an expert technique, and that use of that technique will be maintained once the performance
requirement is removed.

Though our results are encouraging, we acknowledge that our study has several limitations.
While we have presented evidence that use of the expert technique is maintained even when it is
no longer strictly necessary to complete the task, it is possible that a number of other pressures
are working on participants to create this effect. Our study results show some evidence for this, as
there is a clear trend of participants beginning to adopt the expert technique even during the initial
Slow stage, where they could easily complete the task using two-step selections alone. There are
several possible reasons for this behavior.

First, it is possible that even the low performance requirement of the Slow stage imposed some
sense of urgency, and this was sufficient to encourage participants to begin switching to the ex-
pert technique in the initial Slow stage, and maintain use of it in the final Slow stage. Second,
participants may have anticipated that the speed of circles would increase, and preemptively at-
tempted to transition during the initial Slow stage. This could explain their behavior in the final
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Slow stage as well—participants may have viewed this stage as an opportunity to increase their
knowledge of the expert technique in anticipation of another Fast stage. Third, it is possible that
the overall context of “playing a game” affected participants’ behavior by creating an expectation
to try and perform well. Finally, we instructed participants at the start of the study to “Try to be as
quick and accurate as you can”—a standard instruction for studies of interaction techniques, but
an instruction that may have implied a performance requirement.

Our next study was designed to test some of these limitations by removing the performance
requirement and any expectation of further fast stages.

5 STUDY 2–REMOVING THE PERFORMANCE REQUIREMENT

The results of Study 1 suggest that performance requirement was not the main factor driving
participants to use the one-step selection method (at least in our experimental setting). However,
the final testing stage in Study 1 did still impose some performance requirement, and we did not
explicitly tell participants that they would not face a further fast stage. Thus, participants may have
continued to use one-step selection out of an expectation of a future performance requirement.

To rule this out, we conducted a study that was much the same as Study 1, but before the
final stage, the study system stopped and prompted the participant to listen to the experimenter.
The experimenter then instructed the participant: “OK, you’re almost done. In the next stage, the
enemies will appear, but they won’t move. Once you swipe an enemy, there will be a short delay,
and then the next enemy will appear. There are 48 enemies in total, and you can work at your own
pace to get through them.”

This study design also introduces a limited test of whether use of an expert technique transfers
when the task changes—the task in the final stage is no longer “swipe the circle before it reaches
the bottom of the screen” but rather “swipe the unmoving shape at your own pace.” Although
the task mechanism (swiping) was the same, and the final stage was still carried out in the game
environment, the complete lack of movement made the task in the final stage qualitatively different
from the rest of the game.

5.1 Tasks and Stimulus

Trials were carried out in a similar fashion to Study 1 (see Section 4.1). To accommodate the
changes to the final stage, we re-developed the study system, and in the process made a few addi-
tional changes. We made the circles larger, increasing their radius to 1/4 the screen width, with the
idea that this could make it easier for participants to slice them. We also made the game slightly
easier, decreasing the circle speeds for each of the stages, and regularized the time between trials
to be 1 second for all trials. Finally, we made a few minor visual changes to the menu (see Figure 7).

5.2 Study Design

As in Study 1, each participant experienced 288 trials, consisting of 24 blocks of 12 randomly-
ordered trials each. With our modifications to the study system, the enemy speeds for the stages
of Study 2 were Slow—5.1 seconds on screen, Medium—3.3 seconds on screen, Fast—2.1 seconds on
screen, with a consistent delay of 1.0 seconds between trials. Finally, as described earlier, in the
final Static stage, circles were stationary and remained on the screen until sliced. There was a 1.0
second delay between trials in the final stage.

5.3 Procedure

The overall study procedure was the same as that of Study 1, with the exception of the final Static
stage in place of a final Slow stage, and the minor modifications to trial timing described earlier.
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Fig. 7. The game application used in Study 2. Apart from some small changes in visuals and the speed of the

circles, the system is the same as that for Study 1.

Fig. 8. Average use of one-step selection for Study 2, computed as the mean of per-participant means. Error

bars indicate standard error.

5.4 Participants

For Study 2, we recruited nine participants, of which two were excluded from our analysis. (One
excluded participant did not meet our exclusion criteria of at least 25% use of one-step in the Fast
stage. The other was excluded because, after starting the game, it became clear that the participant
did not understand how to perform one-step selection). Demographics for the remaining seven
participants were consistent with those of Study 1 (3 male, 4 female, ages 19–35, mean 25, SD 5).
All participants were right handed, and none reported color vision deficiencies. The study took
about 30 minutes to complete, and participants were given a $5 honorarium for participating.

5.5 Results

The average use of one-step selection across the study blocks is shown in Figure 8. As in Study 1,
we do not see a drop in one-step usage in the final stage of the study. In fact, the average per-
participant rate of one-step selection in the Static stage was 97.4%, as compared to 96.9% in the
final four blocks of the Fast stage. A RM-ANOVA did not show a significant main effect (F1,6 = 0.8,
p = 0.41, η2

G
= 0.002).
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Fig. 9. Average trial completion times for Study 2, computed as the mean of per-participant means. Error

bars indicate standard error.

Looking at participants’ data individually, only one of the seven participants used one-step se-
lection less in the final stage than in the previous four blocks (a decline from 100% to 98.5%). Of
the six remaining participants, four maintained 100% use of one-step selection through both the
final four blocks of Fast and the four blocks of Static, and two increased their usage in the Static
stage (one from 98% to 100%, and the other from 80% to 83%).

The preceding results suggest that prompting participants to complete trials “at their own pace”
and removing any performance requirement imposed by moving circles did not reduce the use of
the expert technique in the final stage.

5.5.1 Time to Complete Trials. The average per-participant trial completion times for Study 2
can be seen in Figure 9. The results mirror those of Study 1—we see a rise in the average time
to complete trials at the start of the final stage, when the performance requirement is removed,
followed by a gradual decrease over the four blocks of the final stage. As in Study 1, this indicates
that participants are aware that they no longer need to perform selections quickly, even while they
maintained their use of the expert selection technique.

5.5.2 Error Rates. Average error rates for Study 2 are shown in Figure 10. In general, the error
rates appear to be lower than those of Study 1, in particular for the Fast stage. This suggests that
our modifications to ease the difficulty of the game were effective.

5.6 Discussion

Consistent with the results of the first study, use of the expert selection technique was maintained
or increased by the nearly all participants in the final stage, even despite the fact that trials in this
stage had no time limit for successful completion, participants were instructed to work at their own
pace, and it was clearly communicated that this was the final trial block (i.e., there would not be
additional fast trials). This provides further evidence that a high performance requirement imposed
in a training context (to motivate participants to adopt an expert interaction technique), does not
need to be maintained for the use of the expert technique to persist, at least in our experimental
setting.

It is possible that additional factors, such as extrinsic motivators (e.g., the experimental setting),
or the high-level task (i.e., playing a game) are behind participants maintaining use of the expert
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Fig. 10. Average error rates for Study 2, computed as the mean of per-participant means. Error bars indicate

standard error.

selection technique. To investigate this possibility, we conducted a third study, described in the
next section.

6 STUDY 3–PERSISTENCE IN DEDICATED TRAINING

Our first two studies suggest that performance requirement and the expectation of a future perfor-
mance requirement alone are not the drivers of participants using the expert technique once they
have learned it. This is encouraging, because it suggests that a high performance requirement can
be imposed to motivate users to learn, and that, other things being equal, the performance require-
ment does not need to be maintained for users to continue using the expert technique. However, in
real world dedicated training scenarios, other factors are not equal—in moving to a usage context,
performance requirement will change along with additional extrinsic factors, such as the high-
level task being performed, the user interface, extrinsic motivators, and the physical environment
in which the technique is being used.

Our goal with Study 3 was to test post-training persistence in a more realistic scenario, in which
a range of different factors are changing at once. We were particularly interested in examining the
effect of different high-level tasks on maintenance of the expert technique. The specific research
questions were the following:

• Once consistent use of an expert technique has been established in a training context, will it
persist when performance requirement, high-level task, extrinsic motivators, and physical
environment are changed?

• Will some types of high-level tasks (e.g., repetitive, creative, and complex) cause users to
revert to the novice technique?

• How will an increasing time gap between training and usage contexts affect use of the
expert technique?

To answer these questions, we first trained participants to use the menu of a touch-based draw-
ing application through a game similar to that used in Studies 1 and 2 (Figure 11(a)). We then asked
participants to complete a series of drawings over a week’s time using the drawing application it-
self (Figure 11(b)). These two applications are intentionally similar to those used in previous work,
in which it was shown that participants did not adopt one-step selection, even after spending 10
weeks of completing drawings on a regular basis (Gutwin et al. 2015). This previous finding sug-
gests that it will be difficult to achieve transfer of the expert technique from the training game to
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Fig. 11. The two applications used in Study 3.

the drawing tasks. However, in contrast to this previous work, our training procedure for this study
was designed to ensure participants have learned and are able to successfully perform the one-step
technique before they begin performing drawing tasks. In terms of previous work on transfer, our
approach is for participants to overlearn the spatial locations of the commands (Driskell et al. 1992;
Ebbinghaus 1913).

6.1 Procedure

In an initial session, conducted under an experimenter’s supervision, participants installed the
menu game and drawing application on their personal Android devices. They were then introduced
to the drawing application and the game interfaces, and told “Today, we’d like you to play a game
that will train you to use the menu for the drawing application. We want you to try and learn
the locations of all of the menu items.” They then played the game, which took approximately 18
minutes.

After the initial session, participants returned to their everyday activities. In the following days,
participants were emailed sets of drawings (two per day) to complete on their own time, and were
asked to send the drawings back to the experimenter. The first set of drawings was emailed out
less than an hour after the initial session. Subsequent sets of drawings were sent out 1, 3, 5, and
7 days after the initial session. In each case, participants were given a drawing to reproduce, and
asked to email the drawing and logs back to us within 12 hours of receiving the email.

At the end of the study, participants met with the experimenter to complete a demographics
questionnaire and a short post-study questionnaire.

6.2 Tasks and Stimulus

The training game in the initial session was similar to that used in Studies 1 and 2—circles showing
menu items fell from the top of the screen, and the participant needed to select the matching item
and draw a slice gesture through the circle before it reached the bottom of the screen. As before,
participants could select items using either two-step or one-step selection. However, the game
followed a slightly different pattern of stages than in Studies 1 and 2—after an initial Slow stage,
stages alternated Medium, Fast, Medium, Fast, and then ended on Medium. Our rationale was that
this would encourage participants to adopt one-step during the game by allowing them to experi-
ence some Fast blocks early on, then provide some Medium blocks where they could increase their
skill. Otherwise, the enemy speeds for Study 3 were consistent with Study 2: Slow—5.1 seconds on
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Fig. 12. Drawing tasks assigned to participants during Study 3. Five sets of two drawing tasks each were

assigned over the course of a week after the initial session.

screen, Medium—3.3 seconds on screen, Fast—2.1 seconds on screen, with a consistent delay of 1.0
second between trials. Each stage consisted of four blocks of 12 items each (one for each menu
item, presented in randomized order).

As mentioned earlier, the drawing application’s menu contained the same items as the game
(Figure 11). Using this menu in the drawing application, the user can set the current tool (Paint-
brush, Line, Circle, or Fill), color (Black, White, Red, and Yellow), and line thickness (Fine, Thin, and
Medium). The menu button displays the current settings for these three attributes. With the menu
closed, the user can draw using the current tool and settings by touching the screen area outside
the menu button. An Undo command is also included in the drawing application.

The assigned drawings for each day of this study are shown in Figure 12. The Cat drawing
was repeated on each trial day, to test whether repetition of a known drawing task would affect
persistence of the expert technique. On Day 1, the Shapes drawing was included to provide a
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Fig. 13. Learning curve for the game portion of Study 3, showing percentage use of one-step selections,

computed as the mean of per-participant means. Error bars indicate standard error.

drawing that required little planning, but forced the user to make frequent selections in the menu.
The Beaker drawing on Day 5 was designed to be more complex than other drawings, and therefore
to require more planning of which tools to use. Finally, on Day 7 participants were given an open-
ended Creative drawing task, where they could draw what they wished, to test whether creative
planning would influence the persistence of the expert technique.

6.3 Participants

We recruited 10 participants from a university campus (8 male, 2 female, ages 19–34 (mean 25, SD
5)). One participant was left handed, while the rest were right handed. Participants were given a
$30 honorarium for participating in the study. We imposed an exclusion criterion that participants
must exhibit at least 80% usage of the expert technique by the final four blocks of the initial game
session, which was met by all participants.

6.4 Results

6.4.1 Game Session–Transitioning to One-Step. Figure 13 shows participants’ average use of
one-step selection for the game portion of Study 3. We can see that participants quickly adopted
one-step selection in the initial Slow stage, and then used it nearly exclusively through the remain-
ing stages.

In comparison to Studies 1 and 2, participants adopted one-step selection much more quickly
during the game portion of this study. There are a number of potential explanations for this. First,
the item positions in the menu may have been easier to remember, because they were grouped into
semantic categories by row (tools, colors, and line thicknesses), and in the case of line thicknesses,
followed a predictable thin-to-thick progression within the row. Second, in this study, we explicitly
instructed participants to try and learn the locations of the items in the menu. Finally, the approach
of alternating Medium/Fast stages may have encouraged participants to more quickly adopt one-
step selection.

6.4.2 Game Session–Error Rates. Figure 14 shows participants’ average error rates for the game
portion of Study 3. The error rates are lower than those in Study 2, providing further evidence to
suggest that the items in the menu for this study were easier to learn than the color menus used
in Studies 1 and 2.

6.4.3 Drawing Tasks. In general, we had good compliance with study instructions, with all par-
ticipants completing all of the assigned drawing tasks, and the majority completing them within
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Fig. 14. Average error rates for the game portion of Study 3, computed as the mean of per-participant means.

Error bars indicate standard error.

the 12-hour timeframe—only two participants, P5 and P7, required additional reminders and com-
pleted a number of the drawings on the day following that where they were assigned. However,
all participants completed each set of drawings before the next set was assigned.

Figure 15 shows each participant’s use of one-step selection for the 10 drawing tasks assigned
during the study. Overall, more than 50% of selections were made with the one-step method—
however, it was not the case that participants all used the expert technique half of the time. Instead,
we observed a drastic difference between participants, with P1, P3, P5, P8, and P10 using one-step
selection almost exclusively (with the exception of the Ladybug drawing for P8), and P2, P4, P6,
and P9 almost exclusively using two-step selection. The only participant that appeared to use a
mix of one-step and two-step selection is P7. Moreover, P7 commented in the final wrap-up session
that he realized partway through the study that an advantage of two-step selection was the ability
to open the menu and set more than one parameter (e.g., a tool, color, and line thickness). This may
suggest that P7 spent more time experimenting with different methods for making selections than
other participants, which could explain why his data differs from those of the other participants.

The finding that the expert technique did robustly transfer to a very different usage context
for five of the ten participants suggests that, for some people, expert skills learned during a brief
dedicated training session (in this case an ∼18 minute game) can persist even when transferring to
a usage context with very different high-level tasks, extrinsic motivators, physical environments,
and performance requirements. In addition, for these participants the post-training persistence of
the expert technique was consistent across a range of task types, including those that they had
performed multiple times before (the Cat task), tasks designed to require numerous selections (the
Shapes task), tasks that required more planning (the Beaker task), and tasks requiring creative
thought (the Creative task).

However, the aforementioned result must be considered in light of the opposite result for four
other participants. For these participants, there was almost no use of the expert method, even for
commands that were carried out very frequently, and regardless of the type of task being carried
out.

This pattern of all-or-nothing persistence is surprising. In the next section, we present the results
of our post-study questionnaire, which was conducted to gain insights into this phenomenon.
We also followed up on P7’s comment that an advantage of two-step selection was the ability
to perform multiple two-step selections for a given menu opening (i.e., to amortize the cost of
opening the menu by making multiple selections, such as a tool and a color). To check whether
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Fig. 15. Percentage of one-step selections for drawing tasks in Study 3.

this practice was widespread, we examined the two-step selections made by the four non-one-step
participants (P2, P4, P6, and P9). In all, these participants opened the menu 2493 times over the
course of the drawing tasks, and 17% of these menu openings were associated with two or more
item selections. On an individual basis, the percentage of menu opens with two or more selections
was between 11% and 20% (P2 20%; P4 11%; P6 16%; P9 19%). That this practice was performed by
all participants may suggest that it contributed to their preference for the two-step technique.

Finally, we were interested in whether the non-one-step participants became faster with their
two-step selections over the course of the 5 days of drawing tasks. To examine this, we analyzed
the median time between when the menu button was pressed and a first item was selected, across
the 5 days of drawings. This analysis did reveal a downward trend, with the median time for the
5 days being 939ms, 895ms, 836ms, 809ms, and 775ms, respectively. This suggests that these par-
ticipants were becoming more confident in item locations and relying less on visual search for
items over time. Further, this might suggest that these participants were gradually moving toward
a point where they would switch to the expert selection technique (i.e., following the rehearsal hy-
pothesis), though we cannot say this conclusively because we did not observe participants making
the transition.
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6.4.4 Post-study Questionnaire. In the post-study questionnaire, we tested participants’ mem-
ory of the menu by presenting them a blank menu grid on paper, and then asking them to fill
in the items from the study system. All but one participant filled in all item locations correctly.
P2, who used two-step selection almost exclusively for the drawing tasks, placed four items in-
correctly, all in the colors row (i.e., they ordered the items in this row incorrectly). These results
suggest that most participants’ memory of the actual item locations—regardless of whether they
used one-step or two-step selections for the drawing tasks—was perfect or nearly so, suggesting
that simple memory accuracy was not the main reason why some people reverted to using one-step
selection.

We also asked participants to rate their confidence in their answers about the locations of items.
P1, P3, P5, P7, P8, and P10—the one-step users—rated their confidence as 5/5 for all items (in re-
sponse to the question “How confident are you that you have recalled the menu item locations
correctly? 1 = Not at all confident, 5 = Very confident).” The two-step users showed mixed results:
one participant (P6) rated their confidence as 5/5 for all items, and three more (P2, P4, and P9)
rated their confidence as 4/5 for all items. Although the difference is not large, and a confidence
of 4/5 is still reasonably high, this result may suggest that the non-one-step users chose not to
use the expert method because they were less confident in their memory of the item locations
(even if they had in fact accurately learned the locations). However, it is also possible that the
higher confidence ratings for one-step users are the result of their continued use of one-step se-
lection during the week of drawing tasks (which may have increased their confidence in the item
locations).

To better understand the reasons why some participants used one-step selection for the drawing
tasks, while others did not, we presented participants with a set of possible reasons and asked them
to mark the reasons that they agreed with. Specifically, we asked the following question:

Think about situations where you used the two-step method to select items while
working on the drawing tasks. We want to understand the main factors that con-
tributed to you not using the one-step method in these situations.
Read through the following list of reasons, and then place a “1” next to your main
reason for not using the one-step method (or write in a new reason). If there are
multiple reasons, mark them in order of importance with “1”, “2”, “3”, and so on.

Table 1 shows the options we presented to participants, with the answers selected or written in by
the two-step users (and P7).

Each of the statements “I couldn’t remember the positions of some of the items” and “I didn’t
want to accidentally choose the wrong item” were selected by three participants, with P6 and P9
agreeing to both statements. This may provide further evidence that confidence in item locations
contributed to the choice to use the two-step selection technique.

Another possibility is that the posture in which participants used their devices contributed to
their choice of selection. Two participants selected the statement “It was awkward to hit the menu
button and an item at the same time,” and P9 wrote in “The size of the screen was large, hence it
was easier to use two fingers, one after holding the menu.” P9’s device was a tablet with a 7-inch-
diagonal screen, which was the largest device used by a participant in the study. Moreover, based
on observations of this participant during the initial session, and his write-in response, we suspect
that he was using both hands to perform selections, with the thumb of the hand holding the device
used to hit the menu button, and the fingers of the opposite hand used to make selections. In our
own tests, this is a more awkward configuration for performing one-step selections, which may
explain his preference for the two-step selection method.
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Table 1. Rationales indicated by non-one-step participants (P2, P4, P6, P7, and P9)

for using two-step selection

I’m not sure why, I just preferred the two-step method. P4
It was awkward to hit the menu button and an item at the same time. P4, P6
The two-step method was fast enough. P4, P7
I couldn’t remember the positions of some of the items. P2, P6, P9
Opening the menu helped me plan out the drawing I was working on. P7
I wasn’t in any hurry. P6
I didn’t want to accidentally choose the wrong item. P6, P9, P7
Seeing all the items in the menu was useful. P2, P6
Remembering the locations of items takes time/effort. (none)
I just didn’t think to use one-step method while working on the drawings. (none)
I always tried to use one-step, but may have used two-step by accident in some
cases.

P2

Other
(please specify)

P9—“The size of the screen was large, hence it was easier to use two
fingers, one after holding the menu.”
P7—“Selecting multiple options in one go.”

7 DISCUSSION

Our three studies examined the transfer of a memory-based expert selection technique when
changing several factors between a training context and a usage context (including performance
requirement, retrieval trigger, task type, extrinsic motivation, and physical environment). The
main findings from the studies are as follows:

• In the game-based training context, participants adopted the expert selection method
quickly (within 24 blocks and∼18 minutes), and used the expert method consistently during
the game (Studies 1–3).

• Once participants were trained on the expert selection method, reducing the performance
requirement (Study 1), or removing the performance requirement entirely (Study 2), did not
reduce use of the expert method (within the game-based training context).

• Changing several elements between the game training context and the usage context (sim-
ilar to what would change in a real-world training scenario) led to “all-or-nothing” use
of the expert method—five of ten participants used the expert method almost exclusively,
and four of ten almost never used it. Only one participant showed partial use of the expert
method.

7.1 Explanations for Results

Here, we consider potential explanations for our main results, and several questions raised by
these results.

Why did use of the expert method persist after reducing or removing performance requirements (Stud-
ies 1 and 2)?

Our conceptual framework for post-training persistence (Section 3) identified performance re-
quirement as an important potential difference between training and usage contexts—a high per-
formance requirement can be a valuable tool during training, as it can motivate people to adopt
an expert technique. In Studies 1 and 2, participants continued to use the expert method even af-
ter the performance requirement was dramatically reduced or removed entirely. This means that
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even though the increasing performance requirement may have prompted the switch to the expert
technique, decreasing the requirement did not have the opposite effect—people continued to use
the expert method even when there was no longer any need to perform quickly. There are several
potential reasons for the persistence of the expert method in these studies.

Our framework suggests that the differences between training and usage contexts (e.g., differ-
ences in task type, motivation, or performance requirement) can lead people to revert to using a
novice technique instead of a newly learned expert method. In addition, prior work on skill trans-
fer has shown that a variety of factors in the training program, in the individual, and in the usage
environment, can have positive or negative effects on transfer and retention. The results of our
first two studies suggest that a combination of factors result in the behavior we observed in the
usage context, with some factors increasing the likelihood of persistence and some reducing the
likelihood. In Studies 1 and 2, we modified only one factor (the performance requirement). This
was done in order to test whether this aspect had a dominating effect on transfer, and our re-
sults show that it does not—instead, it appears as though the factors that promoted transfer in our
study outweighed the effect of reducing the performance requirement. For example, our studies
promoted overlearning during the training phase, and we used similar retrieval triggers, tasks,
and physical environments for both the training and “usage” contexts. Therefore, it seems likely
that if participants underwent an unconscious calculation when deciding what method to use for
the final low-performance blocks, there were simply more terms in the equation that promoted
the use of the expert method (e.g., “I remember the expert method well” and “this new setting is
similar to the one I just experienced”), than terms that detracted from the expert method (e.g., “I
don’t need to go fast for this task, so I can use the old method”).

However, the results of the first two studies clearly show that performance requirement is not
as critical a “slippage factor” as we first expected. This is good news for designers who would like
to use performance requirements as a way to increase the efficacy of training regimes.

Why did use of the expert method persist for some people in Study 3?

The continued use of the expert method observed in Study 3 can be explained along similar lines
to the earlier discussion—the factors promoting the use of the expert technique outweighed the
factors detracting from its use. What is interesting about Study 3, however, is that there was sub-
stantially more distance between the training context and the usage context (in terms of time since
training, task environment and type, risk of making errors, physical environment, experimenter
pressure to use the expert method, and performance requirement). All of these factors have been
suggested in prior work as reasons that skill transfer can fail—but despite this substantial com-
bined difference, the majority of participants in Study 3 continued using the expert method. We
see six potential factors that may have contributed to the overall persistence of the expert method
for these five participants.

The effectiveness of overlearning. Once a user achieves a high level of mastery in the use of a
technique, it can become the normal way to carry out an action (e.g., many users use Ctrl+ S to
save a document without a great deal of conscious thought). One way in which mastery is achieved
is though overlearning (Ebbinghaus 1913)—repeated practice after an initial level of facility with
the technique has been reached. In our study, all participants learned the expert selection method
quickly, and then carried out several further blocks of trials. By the end of the training session, par-
ticipants demonstrated a high degree of mastery—that is, near-complete use of the expert method.
Overlearning has been shown to have a positive effect on skill transfer (e.g. (Driskell et al. 1992)),
and so it is possible that the amount of practice that we provided in the expert technique was
enough to move some participants to a level where one-step selection was their default method.
The error rates seen in Study 3, however, provide conflicting evidence about mastery—participants’
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error rates were still above 10% in the final block of training, suggesting that they had not yet mem-
orized the command locations.

Recognition of the benefits of the expert method. The goal of most training programs is to provide
users with knowledge and skills that will actually help them in their work, and despite the docu-
mented challenges of achieving transfer of training to usage contexts, there are cases where users
recognize the benefits of switching to the expert technique. Therefore, one possible reason why
five people continued to use the one-step selection method may simply be that they saw the value
in that technique (e.g., recognizing that it was faster) and made a conscious decision to continue
using it.

Limited pre-existing inertia for the novice method. Previous research in HCI has suggested that
when one kind of interaction is well-practiced, there is inertia for this method that can prevent
users from switching to a more efficient technique (e.g. (Carroll and Rosson 1987; Fu and Gray
2004)). In our third study, even though participants first learned the two-step selection method,
they quickly made a transition to the one-step expert method, and therefore they may not have
built up as much inertia with the novice technique as would be present in other settings.

Intrinsic (and possibly extrinsic) motivation. Although we did not ask our participants questions
about their motivations, it is possible that some participants continued with the expert technique
because of motivational factors, either intrinsic or extrinsic. For example, some users like achieving
expertise with a software system, either for their own personal satisfaction or because they want to
be seen as an expert user by others (either peers or the experimenters). That said, our instructions
clearly indicated to participants that the drawing tasks would be carried out individually, and
that people could carry out the tasks in any way they wished, so we believe that social standing or
experimenter approval is less likely to have motivated people than personal interest or satisfaction.

Recency and momentum. Previous research has shown that the length of time between training
and application of the learned skills or knowledge negatively affects transfer (e.g., (Rohrer et al.
2005)). In Study 3, participants were assigned their first drawing the same day as the training
session, so the continued use of one-step selection may have been encouraged by the recency of
training—that is, there may have been some momentum for the expert method that carried over
from the game to the at-home tasks. However, if recency is a strong factor, we might expect to
see decay in the use of one-step selection over time, and our results show that use of the expert
method was as strong at the end of the at-home part of the study as it was at the start. Another
possibility is that recency is a strong factor, but that the individual drawing tasks acted as additional
training and kept the momentum going through the remaining study tasks, despite the two-day
gaps between the later tasks.

Training-to-usage distance may have been smaller than expected. It is possible that our analysis
may have overestimated the distances between the training and usage contexts. Although it is
obvious that the differences were large enough that four participants did not continue using the
expert method, it is worth re-assessing elements that could have mitigated the distances between
training and use. It is true that several aspects of the setting were the same or similar (e.g., partici-
pants used the same devices for the game and the drawing), and the design of the drawing system
may have reduced some distances (e.g., selections in the drawing menu were non-destructive, so
the perceived risk of making a selection error was perhaps reduced).

Despite the possibility that some differences between the training and usage contexts were
smaller than expected, there were still substantial differences in the task type, the physical set-
ting, the instructions, and the performance requirements. It is therefore also worth noting that the
positive influences of the aforementioned factors on the five users’ decision were not outweighed
by the negative influence of other distance-creating factors. That is, the differences between the
overall task of “drawing” versus “playing a game” were not enough to cause a slip back to the
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novice method, and nor were the reduction in performance requirement, the change in physical
setting, or the lack of experimental oversight on the completion of the tasks. This result provides
encouraging evidence that training in expert methods is not likely to be derailed by these kinds of
changes, at least for some users.

The preceding factors, whether individually or in combination, may have played a role in the
five one-step users’ decision to continue using the expert method. It is obvious, however, that these
factors do not have an overwhelming effect, since they did not change the behavior of the four
users who used two-step selection for the drawing tasks. We consider these users next.

Why did use of the expert method not persist for four users in Study 3?

Four of ten participants showed almost no use of the expert method during the at-home phase
of the study, even though they were successful and consistent in using it during the game-based
training. Our conceptual framework suggests that there are factors that either promote or detract
from a user’s decision to continue with an expert technique—and so if an expert technique fails to
persist, the factors that detract from its continued use have outweighed the factors that promote
it. Moreover, in the case of these four participants, this imbalance must have been immediate and
substantial, since they abandoned the one-step technique as soon as they started the drawing
tasks. Here, we consider specific possibilities why this group of four non-one-step users may have
arrived at their (conscious or unconscious) conclusion to stop using the expert technique.

Error aversion. Participants’ responses to our post-study survey show that two of the four non-
one-step users (P6 and P9), as well as our “in-between” participant (P7), were worried about se-
lecting the wrong item when using the expert method. Incorrect selections are more likely with
one-step selection because it is a memory-based technique, and there is no visual feedforward
information to confirm that the user is about to make the correct selection. However, these partic-
ipants’ hesitation to use one-step because of the possibility of making an error is somewhat puz-
zling. First, the FastTap menu was designed to have a very low error cost—none of the commands
in the menu were destructive (with the possible exception of Undo), and any incorrect selection
could be fixed simply by making an additional selection for the correct item. Second, all but one
of the participants—including the non-one-step participants—demonstrated perfect knowledge of
the menu’s spatial layout during the memory test held at the end of the study. This meant that their
hesitation was not based on an actual lack of knowledge about the item locations. It may be that
despite participants’ strong spatial knowledge and the low cost of making an error, some people
are particularly error-averse—and because there are a few examples of user interfaces that are de-
signed to invite guessing as a user selects command functionality, many users may have had prior
experiences where making an error was costly. A psychological phenomenon called “negativity
bias” may be able to partially explain this behavior (Baumeister et al. 2001; Kahneman 2013)—
people often over-estimate the magnitude of a future negative event, such that “losses loom larger
than gains” (Kahneman 2013). When faced with the prospect of a potential error, people may shy
away from that perceived negative, even if the actual consequences are negligible.

Level of confidence in spatial memory. A related issue is that a user’s level of confidence is also
strongly related to their willingness to use a memory-based technique. Our post-study survey
asked participants to rate how confident they were in their knowledge of each item’s location
in the menu. All participants scored their confidence at 4/5 or higher, but there was a small (but
potentially important) difference between the one-step users and the non-one-step users. People
who continued to use the technique all rated themselves at a confidence of 5/5, whereas three
of the four non-one-step users rated their confidence as 4/5. This is a small difference, but may
suggest that if some users are anything less than completely confident they will be reluctant to
use a memory-based method because of the non-zero possibility of making an error (particularly if
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coupled with negativity bias as described earlier). These users may adopt a stance of “I’m not going
to depend on my memory unless I’m certain”—even if their performance shows essentially perfect
recollection of the locations. This possibility again points to the potential importance of overlearn-
ing as a training strategy (Driskell et al. 1992). The value of continued practice in a memory-based
technique, even after mastery has been demonstrated, could have more to do with the benefits to
people’s confidence in their memory, than it does on the actual strength of the association.

Ergonomics and the physical usage setting. Two of the non-one-step users (P4 and P6) agreed with
the statement “It was awkward to hit the menu button and an item at the same time.” Although
none of the participants appeared to have any difficulty with the ergonomics of the technique
during the training session, it is possible that the physical environment where these participants
carried out the drawing tasks may have made the one-step method more awkward. For example,
as stated in earlier research, the one-step selection technique requires both hands if the device is
being held (one to hold the device, the other to perform the selection); similarly, it can be difficult
to position the fingers for a multi-touch (one-step) tap when the user holds the device in a two-
handed grip; and the thumb-and-finger posture needed for FastTap can be difficult for users with
long fingernails (Gutwin et al. 2014). In the training session, users consistently held the device
in their left hand, and made selections with the thumb and forefinger of their right hand (all but
one participant was right-handed). Although we did not track the specific postures used by our
participants during the drawing trials, it is likely that the difference between the physical training
environment and the physical usage context was a factor for some participants that detracted from
the use of one-step selection. We note, however, that physical environment and device posture are
likely to vary considerably across 7 days and 20 different tasks—and since we did not see variation
in use of one-step selection for these four participants, it seems unlikely that physical context is
the dominant factor in reducing use of the expert method (although in the following we consider
the possibility that the first drawing experience was a “tipping point” for some participants).

Satisficing and perception of the distance between contexts. Previous research (reviewed in
Section 2) suggests several general reasons why users fail to adopt faster expert techniques. One
issue that may have occurred in our study is satisficing (the perception that the novice method
is good enough for the tasks at hand). That is, part of the process of using an expert method in
the usage context is deciding (consciously or unconsciously) that the expert method is appropri-
ate (e.g., it provides value over some threshold, and has a cost under some other threshold). It is
possible that non-one-step users had a different perception of the distances and thresholds in the
usage scenarios, and felt that the two-step method was good enough for the drawing tasks. Some
evidence for this possibility is seen in the post-study survey, in which two participants agreed
with the statement “The two-step method was fast enough” and another agreed with “I wasn’t
in any hurry.” The small sample size for these results, however, means that this issue should be
followed up in further studies. Finally, other previously studied reasons for not adopting an expert
method seem less likely—for example, the “performance dip” that can occur when users switch to
an expert technique (Scarr et al. 2011) is unlikely to have occurred in our study, since users were
already able to perform at a high level with the one-step method.

Local optimality and unexpected value of the novice method. Previous work has also introduced
the idea that users may continue with a novice technique because it has advantages in a given
situation, even if it is slower overall compared to the expert method. Some features of the two-
step method may have acted as local optimizers for some of our participants. For example, the
two-step method allows exploration of the entire menu, which can help people think about the
tools that they will need for the drawing task (a possibility first considered in an earlier study of
FastTap menus (Gutwin et al. 2015)). Two of the non-one-step users (P2 and P6) agreed with the
statement “Seeing all the items in the menu was useful,” which fits with this explanation. However,
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the fact that four users showed such consistency of two-step use across several types of drawing
with different planning requirements suggests that these factors are unlikely to be the overarching
reason for the behavior we observed. In particular, the two-step method was unlikely to be optimal
for the frequently repeated Cat drawing, because increasing familiarity with the drawing meant
that users did not have to carefully plan out the tools that they were going to use.

Another benefit of the two-step selection method was that the menu could be opened once, and
then used to select multiple items (because the menu does not close until the thumb is lifted from
the menu button). This capability was mentioned by our one variable-use participant (P7), and our
analysis showed that it was used by all of the non-one-step participants for between 11% and 19%
of menu openings. This may explain use of two-step selection for these instances, but it does not
fully explain its use for the other 80–90% of selections.

Differences in intrinsic motivation. Finally, the non-one-step group may simply have been less
interested in doing things the expert way, compared to the one-step group. There is some evidence
for this possibility in the post-study questionnaire results, where one of the two-step participants
agreed with the statement “The two-step method was fast enough” and another agreed with the
statement “I wasn’t in any hurry.” The design of FastTap may have contributed to these attitudes,
in that the novice method is also fairly fast, so returning to the novice method did not incur a
substantial performance penalty, unlike shortcuts in other interfaces that can be dramatically faster
than their mouse-based counterparts. That is, the similarity between the novice and expert forms
of FastTap (which was intended to ease the transition from novice to expert) may have also made
it easier to revert to using the novice method. This would be an unintended consequence of the
design that should be studied further.

Why did we see “all-or-nothing” use of the expert method in Study 3?

The dramatic differences in usage during the at-home drawing tasks were surprising—nine of the
ten participants either used the expert method all of the time (five participants) or none of the
time (four participants)—and behavior was consistent across several types of tasks and a week
of elapsed time. In the earlier sections, we have considered factors that may have promoted or
detracted from the use of the expert method overall; here we look specifically at possible reasons
why people’s behavior was so consistent for all but one of the participants.

It may be that people make an initial decision about which technique to use when they first need
to carry out a task in a new usage situation, and once they have made this decision, they continue
to follow the chosen path rather than re-evaluating their choice for every task or command in-
vocation. In the at-home setting where people carried out the drawing tasks, either the two-step
or the one-step techniques were valid choices that could be used in all task situations (aside from
the strategy of making multiple selections for a given two-step menu opening, discussed earlier);
therefore, it is possible that our participants simply decided which technique they wished to use,
and once this decision had been made it was not re-evaluated. Note that it may be that this de-
cision is made without conscious consideration on the part of the user—they may just take the
action that feels the most natural at the time. If this is the case, it may be valuable for integrated
training systems to actively prompt the user when they first enter the usage context to “try out”
the expert technique, to influence this initial decision.

While the preceding theory could explain our findings, general experience with real-world use of
expert methods (such as keyboard shortcuts) suggests that people are not always absolute in their
interaction choices, and that they do sometimes use different techniques in different situations—for
example, sometimes printing a document using the menu item and sometimes using the “Ctrl+ P”
hotkey. This suggests that there are situation-specific factors that could influence an individual de-
cision about a technique. For example, if the user’s hand is already on the mouse, then there may
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be a higher likelihood of them choosing to print using the menu rather than the keyboard short-
cut. Individual users may have a kind of implicit decision tree of factors, with several situational
variables combining to determine whether a user chooses one or another method.

If this was the case for our participants in the drawing phase of the study, the consistent use
of the two-step method for four people implies that there were enough negative factors in each
usage situation such that the two-step method was always chosen. These factors may all arise
from the specific demands of the current task—e.g., our four non-one-step users may have always
been slightly unconfident about the item locations, and thus decided in each case to use the two-
step method. However, it is also likely that there are factors that operate across multiple tasks—
in particular, the technique that was used for the previous selection could exert various kinds of
inertia (e.g., by being foremost in memory) that weighs in favor of continued use of that technique.
If users do employ a type of implicit decision tree as they choose which technique to use for each
task, it is interesting to note that the initial parts of the decision tree for two-step and one-step
selection may be very similar. The mechanism for selecting a command (e.g., hand posture and
movement) is nearly the same for both methods, which means that any inertia or established
procedural memory could reinforce the better-known path.

This reasoning may also provide an explanation for the one participant who did not exhibit
the all-or-nothing usage in the drawing tasks. In discovering that he could select several features
in one menu opening, this participant may have consciously added an additional path to their
decision tree—that is, depending on the number of selections to be made, he may have decided to
use either the one-step or the two-step method.

Can existing frameworks of learning and transfer explain our results?

As described earlier (Section 2.2.6), there are several frameworks and theories that have been used
to explain various aspects of learning, skill development, and skill transfer. When we consider the
two groups of participants in our study (those who persisted with one-step selection and those
who did not), it appears that the existing theories can explain the behavior of each of these groups
individually, but face more of a challenge when asked to explain why the split occurred within the
participants.

In the cases where participants did persist with one-step selection, a variety of theories could
be called upon. For example, the ACT-R framework posits that with repeated practice, certain pro-
duction rules become stronger and thus will be chosen when a user needs to complete a task. In
our study, the production rule that was strongly practiced during training was one in which a
stimulus (i.e., a particular command) was followed by the response of a one-step selection action.
ACT-R would suggest that those participants who persisted with one-step had practiced this pro-
duction rule sufficiently that it was the prominent production when the at-home tasks were carried
out. However, the same reasoning can be used to explain why the two-step users did not persist
with one-step—that is, they did not practice the one-step response often enough to make this pro-
duction rule prominent after training. But all participants had very similar experiences during
training, and very similar amounts of practice using the one-step technique. The discrepancy in
persistence across participants suggests two possibilities—first, that different people require very
different amounts of practice before a production rule has been sufficiently rehearsed; second,
that there is an additional variable (or variables) in the users’ experience, other than the amount
of practice, that is influencing persistence.

We can see a similar pattern if we attempt to explain participant performance with the other
theories discussed in Section 2.2.6. For example, the microstrategies theory can explain why some
participants persisted with one-step selection. This theory states that when there are several ways
to carry out an interactive task, users are sensitive to small differences in the efficiency of the
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different strategies, and will adopt those that are most efficient. In our study, one-step selection
was faster than two-step selection (primarily because it requires only one physical action instead
of two), and it is reasonable to conclude that participants could perceive this difference and use
that in an internal calculation about which strategy to choose during the drawing tasks. However,
the microstrategies theory does not explain why some participants would choose to stay with the
two-step technique, even though it was substantially slower.

Fu and Gray’s work on the “paradox of the active user” provides a contrasting explanation to
that of microstrategies. Fu and Gray provide reasons why users may not switch to an optimal
strategy, even if they know about it, and instead persist with a “stable but suboptimal” strategy.
The main factors that Fu and Gray suggest can lead to this situation are a higher generality of
the less-efficient technique across other usage situations, and the presence of incremental visual
feedback that can reduce the user’s cognitive load. In our study, the second of these two factors was
present—the two-step method, although less efficient, did provide incremental visual feedback (i.e.,
the grid menu) that could reduce cognitive load (i.e., people can use recognition rather than recall
with the visual menu). This reasonable explanation, however, does not provide an understanding
of why the behavior was observed for some participants but not for others.

The strong division in our participants therefore presents a challenge for existing frameworks
and models of transfer and strategy choice—although the theories can provide explanations for
either the one-step behavior or the two-step behavior, there is little guidance on why some users
chose the faster method while others did not. Some of the frameworks recognize that these divi-
sions exist—e.g., Fu and Gray clearly recognize that the “paradox of the active user” only applies
to some users, not all—but the frameworks do not give much detail on what leads people to choose
different strategies under similar conditions (i.e., after the same training and the same experience
with the system, as was the case in our study).

As suggested earlier, there must be additional factors that lead to this division. Several frame-
works propose parameters that can account for a change in strategy choice (e.g., frequency of use
in ACT-R), but do not specify the values for factors (or combinations of factors) at which a “tipping
point” occurs and the user switches to a different method. This is interesting in the context of our
study, because half of our users tipped one way, and (almost) half tipped the other way. The details
of the cognitive, individual, or environmental factors that lead to these differences do not appear
to be well modeled by existing formalisms.

What other factors could be at play here? Some have been identified in previous literature on
skills transfer—in particular, individual differences in the specific characteristics of the trainee
(see Section 2.2.3) including ability or motivation, and personality factors such as error aversion
or negativity bias (Kahneman 2013). It would be interesting from a research perspective if individ-
ual differences really did lead to such a strong difference in our participant group. In particular,
if strongly divergent results in persistence of expert methods can be caused by factors such as
personality type or risk aversion, then it is clear that these factors deserve more attention.

It is possible, of course, that individual differences are not as large a factor as the earlier dis-
cussion may suggest—that is, it is possible that the split we observed in our participants is simply
an anomaly, and that in most cases people will consistently go either one way or the other. Fur-
ther studies are required to investigate this possibility, but it is worth mentioning that our study
was not extreme in any way—we followed typical practices that could easily be found in other
user-interface training programs (e.g., a brief training period, a simple application domain, and
a user population that is often used in HCI studies). This suggests that the clear division in our
results was less likely to be caused by something odd in our design—and if the division was so
easily and so obviously found in our study, it may be common enough to warrant further investi-
gation. Overall, further exploration into the effects of individual and environmental factors on skill
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transfer is warranted, and may allow existing theories and frameworks to be further generalized,
and provide additional explanatory power.

Why did the game training context work well to teach the expert selection method?

The training context used in Study 3 enabled all participants to quickly acquire the required mem-
ory and skill and transition to using one-step selection, within ∼18 minutes of playing an engaging
game. Moreover, for five of the ten participants, this training stuck when transitioning to the us-
age context of the drawing tasks. We take these results as positive evidence that for some users
(potentially even a majority of users), a small amount of game-based training can lead to strong
retention in realistic usage contexts. This result also suggests that even fairly large differences
between training and usage contexts can be bridged—and with only a small amount of training.

In terms of what exactly made the game training context work well, the results of our studies
suggest that the performance requirement it imposed was effective at motivating adoption of the
expert technique, and that this adoption persisted once the performance requirement was dropped
and other aspects of the context changed. This is encouraging, because performance requirement
is relatively easy for designers of training systems to manipulate (e.g., by simply imposing a time
restriction on a task), but is difficult to manipulate in usage contexts. The game training context
was also engaging and fun to play, sharing many similarities to quick-reaction games available on
mobile devices. While participants in our studies were not given a choice of whether or not to use
the training system, providing an enjoyable training experience is important in real-world training
scenarios, where users would be free to abandon a training system if they found it unpleasant to
use. In the sections that follow, we discuss in greater detail the potential for this type of game-based
training.

7.2 Generalization to Other Techniques, Applications, and Training Systems

In this article, we have investigated post-training persistence for a particular expert interaction
technique, application, and training system. Given this, it is important to consider how our results
might generalize to other interaction techniques, software systems, and training contexts.

FastTap menus share many similarities with other memory-based interaction techniques, such
as keyboard shortcuts and gestures. In particular, the process of learning all three includes a se-
mantic component (the spatial location, shortcut key, or shape of the gesture) and a motor com-
ponent (the action of performing a one-step selection, keyboard shortcut, or gesture). Given these
similarities, we suspect that our results will generalize to these other types of expert interaction
techniques as well. That being said, a factor that might impact the persistence of some of these
techniques differently from others is the similarity or difference between the actions to perform
novice versus expert selections—in FastTap menus (and marking menus (Kurtenbach 1993)), the
novice and expert selections are performed with nearly the same motor action. In contrast, for
techniques such as keyboard shortcuts, the motor action of performing a shortcut is very different
from that of opening a menu and selecting an item. This difference might increase the likelihood
that keyboard shortcuts will exhibit post-training persistence, because backsliding to the novice
technique requires a very different motor action. Conversely, if the user spends much of their time
in the usage context with one hand on the mouse, this might have an opposite effect, acting as an
additional barrier to using the expert technique.

In terms of generalizability to other training systems, a key question is how important the game
context is, and whether performance requirement imposed in other ways (e.g., a simple timer)
will have the same effect as observed in our studies. This is an important question to answer
because some methods of imposing a performance requirement may be easier to implement in a
given training context than others. For example, it may be easy to implement training within an
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application through adding a simple timer, but may be difficult to integrate a more complicated
game experience.

Finally, we believe that our results will generalize to other software systems, but also that dif-
ferences between applications have the potentially affect post-training persistence. For example,
the complexity of the application could play a role. In our studies participants were able to train
and learn all of the commands available in the drawing application—something that will simply
not be possible for feature-rich applications with hundreds or thousands of commands. As a re-
sult, people who train on an expert technique will necessarily be faced with using a mix of the
novice and expert technique in the usage context. This could impact post-training persistence if
the user adopts a “default” action of, for example, opening a menu when they need to perform a
command. That said, many users of desktop software currently use a mixture of keyboard short-
cuts and menus to invoke commands, and prior research has shown that users are able to employ
subtly different “microstrategies” in how they interact with an interface, even within a fixed task
context (Gray and Boehm-Davis 2000). Overall, investigating post-training persistence in the sce-
nario where participants only learn the expert technique for some commands is an interesting area
for future work. In the next section, we discuss additional possibilities for future work on training
systems for more complex software systems.

7.3 Applications to Real-World Training

The overall goal of this research is to improve users’ performance and expertise with interactive
systems—and there are several positive results from our studies that suggest a game-based training
approach can be successful for this. Although additional studies are clearly needed to expand on
our results and explore the bimodal behavior seen in Study 3, we believe that the game-based
training approach investigated in this article could be generalized to real-world training contexts
relatively easily. In this section, we describe one potential application of this idea.

While spatial menus of the type studied in this article are not common in commercial appli-
cations, keyboard shortcuts are nearly universally offered in feature-rich software. For example,
photo-editing applications such as Photoshop and the GNU Image Manipulation Program (GIMP)
both offer extensive sets of keyboard shortcuts (see Figure 16 for a summary of those offered in
GIMP), and the ability to effectively use these shortcuts is a hallmark of experienced users of the
application. Given that keyboard shortcuts are also a memory-based expert technique, and share
many similarities with spatial menus, we believe that it would be straightforward to adapt our
game-based training approach to train GIMP or Photoshop users on keyboard shortcuts.

We foresee two main challenges in adapting the game-based training approach used in this arti-
cle to this new application domain. First, there are many more keyboard shortcuts in applications
like GIMP or Photoshop than the 12 commands of our drawing tool. There are two ways that
we could adapt our approach to accommodate this difference. First, training on a subset of the
keyboard shortcuts is a worthy initial goal. Prior studies of feature-rich applications have shown
that individual users typically only use a small subset of the available functionality (Lafreniere
et al. 2010; Linton et al. 2000), and “top ten shortcuts” lists are widely available for popular appli-
cations (e.g., http://digital-photography-school.com/10-best-photoshop-shortcuts/). This suggests
that even limiting the training vocabulary to 12 items could make a substantial difference to peo-
ple’s performance. Second, we believe that the training approach used in this article could easily
be expanded to train users on more items. The primary limitation on the number of items for a
FastTap menu is the size of the grid—but this is not a constraint when learning keyboard shortcuts.
Therefore, users could learn one subset of commands at first (e.g., a “top ten most useful” set) and
then learn new subsets based on either their personal tasks or their own interests.
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Fig. 16. Summary of GIMP keyboard shortcuts (from https://jeffkayser.com/projects/cheatsheet-gimp/,

copyright Jeff Kayser).

A second challenge with adapting the game-based approach concerns how to present the key-
board shortcuts to the user during the initial stages of the game. While it was easy to open the
FastTap menu in our studies and see all available commands, the commands in an application such
as Photoshop are spread over a large number of toolbars and hierarchical menus, and it could be
frustrating for a user to search through the interface to learn a command’s keyboard shortcut.
We see two possibilities for improving presentation. First, we could use the ExposeHotKey (EHK)
strategy proposed by Malacria et al. (2013), which displays all hotkeys in an interface when the user
presses a control key. Second, we could present a subset of hotkeys in a “cheat-sheet” style, where
the shortcuts that are currently being learned are shown on the screen with their command names
(e.g., a simplified version of the sheet shown in Figure 16). This latter approach would reduce the
amount of search needed to find the correct shortcut. Researchers have also suggested hybrid ap-
proaches that highlight subsets of commands within the actual interface (Scarr et al. 2015).

We are currently building this type of training system for the open-source Inkscape vector-
drawing software. Research questions that we will consider with these systems include whether
keyboard shortcuts are learned as quickly as FastTap spatial locations, whether learning with the
abstract cue of the game (i.e., retrieval of the hotkey is not set within a realistic task context)
translates to real-world use, and whether the “all-or-nothing” phenomenon occurs—particularly
because factors such as the users’ hand location at the start of the task (keyboard or mouse) may
have a large effect on which method users choose to use, and are more variable in applications
that use the keyboard and mouse as input, as compared to the touchscreen setting focused on in
this article.

7.4 Limitations

Our study results provide new insights into the post-training persistence of expert selection tech-
niques, and reveal just how complex this phenomenon is. In particular, our findings suggest that
a range of different factors may influence whether or not training in an expert technique will
transfer to a usage context. Given this complexity, there are a number of potential limitations to
our studies that are important to acknowledge.
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First, the experimental setting may have imposed a different set of motivations on participants
as compared to a real-world setting. For example, in Studies 1 and 2, participants may have inferred
that we were studying adoption of the expert technique, and this may have affected their decision
of whether or not to continue to use it once the performance requirement dropped. Likewise, in
Study 3, participants may have felt that they were expected to maintain use of the expert technique,
or may have simply thought more about their choice of which technique to use than they would
in a real-world setting. While these extrinsic motivations imposed by the experimental setting are
important to consider, we believe that a similar set of intrinsic motivations are likely to be present
in real-world settings—people who choose to undergo training are probably doing so because they
want to learn and use the expert technique.

Second, while we attempted to design the drawing tasks for Study 3 to cover a range of potential
types of tasks (including routine tasks, tasks that require planning, and creative tasks), additional
factors that have the potential to affect persistence may exist in real-world training scenarios. As
one example, we did not test the scenario in which a user is already familiar and well-practiced with
using a novice technique in an application, and then undergoes training for an expert technique.
In this scenario, it may be more difficult for the expert technique to persist because the novice
technique is associated with well-practiced or routine tasks the user performs in the application.
Identifying and testing additional factors that may affect post-training persistence is an interesting
area for future work.

7.5 Future Work

Drawing together the discussion points raised earlier, we see a number of directions for future
work investigating the post-training persistence of expert interaction techniques. In the next few
paragraphs, we outline some of these directions, as well as specific studies that could be conducted.

First, follow-up studies with a similar design to Study 3 could be used to test some of the hy-
potheses raised in our preceding discussion. For example, it would be valuable to test whether
participants’ confidence in their memory of menu items affects their use of the expert technique
in a usage context—this could be achieved through a short memory test and subjective confidence
rating before the first drawing task. Along similar lines, it would be interesting to test whether
longer or shorter gaps between the training game and the start of drawing tasks leads to more
or less decay in the use of the expert technique, or whether occasional “refresher” rounds of the
training game, interleaved with drawing tasks, can supplement an intensive initial training ses-
sion. Finally, we could probe more deeply into participants’ attitudes toward expert techniques,
and the physical setting or postures with which participants held the device when completing the
drawing tasks, to better understand what is leading to the expert technique to persist or not.

Second, it would be valuable to test whether an initial choice to use a technique has an inertia
or momentum that carries forward over multiple tasks or sessions. This could be achieved by
periodically forcing the user to use either the novice or expert technique, then observing whether
the forced technique continues to be used for subsequent drawing tasks or sessions.

Third, it would be valuable to investigate how strongly our findings generalize to different in-
teraction techniques, training methods, and application types. In particular, it would be valuable to
study the post-training persistence of keyboard shortcuts, and the effect that the user’s hand posi-
tion (e.g., resting on the keyboard, and one hand on the mouse) has on their choice of interaction
technique.

Finally, perhaps the most important area for future work is to attempt to replicate our study
in a full-featured real-world application, such as the proposed study of Inkscape described earlier.
This would reveal the potential for this type of training for commercial applications, and help us to
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understand additional factors affecting post-training persistence for the types of expert interaction
techniques that occur in real-world applications.

8 CONCLUSIONS

In this article, we have introduced the concept of post-training persistence for expert interaction
techniques—that is, whether or not training in these techniques effectively transfers to a usage
context and displaces available novice interaction techniques. As an initial step to investigate this
phenomenon, we presented a framework that defines a range of potential factors that may affect
whether an expert technique will persist, and conducted three studies to gain insights into a se-
lection of these factors. Our findings suggest that performance requirement is a factor that can be
applied in a training context to encourage adoption of an expert technique, but does not need to be
maintained in the usage context for use of the expert technique to continue. We also observed that,
upon entering a usage context after training, users quickly settle on either using the expert tech-
nique (i.e., the expert technique persists) or return to the novice technique, and that this choice is
stable over subsequent days of usage sessions and a range of qualitatively different kinds of tasks.
Finally, based on the findings from our three studies, we have identified a rich set of open research
questions surrounding the post-training persistence of expert interaction techniques, as well as
design implications for training systems, and ideas for how the game-based training approach we
explored could be applied to feature-rich software applications used every day by millions of users.
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